
Trusted Execution Environments in Embedded and
IoT Systems: A CactiLab Perspective

Ziming Zhao
CactiLab

University at Buffalo
Buffalo, USA

zimingzh@buffalo.edu

Md Armanuzzaman
CactiLab

University at Buffalo
Buffalo, USA

mdarmanu@buffalo.edu

Xi Tan
CactiLab

University at Buffalo
Buffalo, USA

xitan@buffalo.edu

Zheyuan Ma
CactiLab

University at Buffalo
Buffalo, USA

zheyuanm@buffalo.edu

Abstract—While the benefits of networked embedded and
Internet of Things (IoT) systems are unparalleled, they are
susceptible to cyberattacks. In recent years, Trusted Execution
Environments (TEE) have been offered in CPUs of embedded
and IoT platforms as a foundational primitive for security to
keep code and data loaded inside protected, with respect to
confidentiality and integrity, from Rich Execution Environments
(REEs). The hardware and software layers of existing TEEs
nevertheless have been criticized for lack of transparency, full of
vulnerabilities, and various restrictions, which means the existing
TEEs and TEE-based security solutions are untrustworthy,
ineffective, or inefficient. Failure to make TEEs trustworthy
and effective will backfire instead of enhancing security because
embedded TEEs usually have the highest privilege and a compro-
mised TEE can completely sabotage the REE. In this paper, we
present our perspective on the challenges and limitations related
to embedded and IoT TEEs. Additionally, we delve into three
recently published projects from CactiLab, which aim to tackle
challenges presented in embedded and IoT TEEs and TEE-based
security solutions at various layers.

Index Terms—Trusted execution environment; embedded and
IoT systems; Arm Cortex-M TrustZone

I. INTRODUCTION

Networked embedded and Internet of Things (IoT) systems,
including those based on microcontrollers, microprocessors,
and Field Programmable Gate Arrays (FPGAs), are essential
to everyday life and are predicted to reach 1 trillion by
2035 [1]. As shown in Figure 1, these systems power a variety
of IoT devices, such as sensors, medical devices, wearables,
smart family gadgets, industrial computing units, autonomous
vehicles, and infotainment systems.

While the benefits of these systems are unparalleled, they
are susceptible to cyberattacks, which are occurring at un-
precedented levels and often have severe consequences ranging
from loss of life [2] to homeland security breaches [3], [4].
For instance, in June 2019, the FDA issued an emergency
warning about potential life-threatening cyberattacks on some
diabetes patients’ insulin pumps, affecting more than 4,000
individuals in the U.S. [2]. Therefore, it is imperative to ensure
our embedded and IoT infrastructure and ecosystem are built
on a trustworthy and secure foundation.

It is, however, difficult to secure these systems due to
software issues and hardware constraints. On the software
front, these systems are usually written in low-level languages,

MicroBlaze

Cortex-M

Embedded and IoT Devices

Medical Thermostat Drone InfotainmentHubFitness

REE TEE (Enclave)

Cache
side-channel

attack

Cold
boot
attack

Control-flow
hijacking
attack

Malicious
peripheral
attack

REE APP

REE OS

TEE APP or
Security Solution

TEE OS

Confused
deputy
attack

Internet and physical access

Fig. 1. The threats embedded and IoT Systems with TEEs face.

e.g., C/C++, whose lack of safety allows attackers to ex-
ploit memory corruption bugs to hijack the control flow [5].
While Data Execution Prevention (DEP) and W⊕X [6] can
defeat code injection attacks, these systems are still vulnerable
to code reuse attacks, e.g., Return-Oriented Programming
(ROP) [7]–[9]. The situation is exacerbated when many of
these systems are Real-Time Operating Systems (RTOS) that
run applications at the privileged level or are bare-metal
systems in which applications execute directly on hardware
without an OS. Due to the lack of security and fault isolation,
a bug anywhere may lead to a crash or to full control by
attackers.

On the hardware front, many embedded and IoT systems
are powered by microcontrollers, e.g., Arm Cortex-M mi-
crocontrollers. Such microcontrollers are streamlined from
microprocessors, and they do not have some of the hardware
units we take for granted on microprocessors. For example,
the Arm Cortex-M microcontrollers do not have a Memory
Management Unit (MMU), without which applications share
the same physical address space, making it difficult to enforce
isolation or to implement effective defenses for memory cor-
ruption attacks, such as Address Space Layout Randomization
(ASLR) [10] due to the low entropy in the address space
layout.

Trusted Execution Environments (TEEs, a.k.a. enclaves), an
enabling technology for the nascent confidential computing
paradigm [11], [12], are offered in CPUs as a foundational

primitive for security to keep code and data loaded inside
protected, with respect to confidentiality and integrity, from
Rich Execution Environments (REEs). TEEs are designed to
provide a haven to execute software in security and fault
isolation and serve as a trusted anchor to deploy security
solutions that monitor the REE software, e.g., Control-Flow
Integrity (CFI) enforcement [13]–[17]. As TEEs bring forward
a new hope for trustworthy embedded and IoT systems, the
semiconductor industry is integrating them into CPUs. For ex-
ample, Arm offers the TrustZone TEEs for both Cortex-A and
Cortex-M architectures [18]. Additionally, Arm Confidential
Compute Architecture (CCA) [19] is supported on Cortex-A
but not on Cortex-M.

The hardware and software layers of existing embedded
TEEs nevertheless have been criticized for lack of trans-
parency, full of vulnerabilities, and various restrictions, which
means the existing TEEs [20] and TEE-based security so-
lutions, such as for isolation [21]–[24] and CFI [25], [26]
are untrustworthy, ineffective, or inefficient. Failure to make
TEEs trustworthy will backfire instead of enhancing security
because embedded TEEs usually have the highest privilege
and a compromised TEE can completely sabotage the REE.

In this paper, we present our perspective on the challenges
and limitations related to embedded and IoT TEEs. Utilizing
Arm Cortex-M and Cortex-A TrustZone as examples, we
draw comparisons between embedded TEEs and their mi-
croprocessor counterparts. Given the fundamental roles TEEs
may play in securing embedded and IoT systems, it is thus
imperative to increase the trustworthiness and deployability
of embedded TEEs and TEE-based security solutions. To this
end, we delve into three recently published projects from our
research lab. These projects aim to tackle challenges presented
in embedded TEEs and TEE-based solutions at various layers.
Specifically, BYOTEE [27] strives to establish trustworthy
embedded TEE hardware, laying a secure foundation for TEE
software. RET2NS [28] investigates and eliminates exploitable
confused deputy vulnerabilities in embedded TEE software,
helping establish a secure software base for TEE-based secu-
rity solutions. Lastly, SHERLOC [29] employs embedded TEEs
to achieve system-oriented control-flow violation detection
for IoT systems. We have open-sourced all three projects at
CactiLab’s GitHub webpage.1

II. BACKGROUND

In this section, we overview two embedded and IoT plat-
forms: System-on-Chip (SoC) Field Programmable Gate Ar-
rays (FPGA) and Arm Cortex-M. In addition, we compare
mobile and embedded TEEs using Cortex-A and Cortex-M
TrustZone as a case study.

A. Embedded and IoT Architectures: A Case Study of SoC
FPGA and Arm Cortex-M

SoC FPGA. System-on-Chip implements the functionality
of an entire system on a single silicon chip. Compared with

1https://github.com/CactiLab/

system-on-printed-circuit-board, SoC is lower cost, enables
more secure data transfers, and has higher speed and lower
power consumption. However, traditional application-specific
integrated circuit SoCs lack flexibility, making them suitable
only for products with a limited lifetime. SoC FPGA is a
type of flexible system-on-programmable-chip, where FPGAs
can be reconfigured as desired. The market of SoC FPGA
is expected to grow significantly with the increase in the
global adoption of artificial intelligence and internet-of-things
solutions.

A SoC FPGA comprises the following parts: (i) Processing
System (PS), which is formed around hard processors, such
as the Cortex-A processor on Xilinx Zynq-7000 SoC [30].
Operating systems and applications run on the PS; (ii) FPGA,
which can implement any arbitrary system, including soft
processors, e.g., Cortex-M or MicroBlaze, high-speed logic,
arithmetic, and data flow subsystems. In addition to the
general fabric, the FPGA has Block RAMs (BRAM) to store
data. Note that BRAM is made of Static RAM (SRAM) on
existing SoC FPGA platforms. Compared to DRAM whose
cells are made of capacitors and is vulnerable to cold-boot
attacks due to the slow decay [21], SRAM decays faster [31].
FPGA is configured with a bitstream, which is programmed
in hardware design description languages, such as Verilog or
VHDL; (iii) other integrated on-chip memory and high-speed
communications interfaces.

Arm Cortex-M. Most Arm Cortex-M processors have
thread and handler execution modes [32]. They also have
privileged (kernel space) and unprivileged (userspace) levels,
which are orthogonal to the execution mode. The current mode
and privilege level are determined by the combination of the
interrupt program status register (IPSR) and the CONTROL
register. IPSR is part of the program status register (xPSR).
IPSR indicates the exception number and handler mode if
not 0. If IPSR is 0, the processor is in the thread mode, and
the nPRIV bit of CONTROL determines whether the state is
unprivileged or not.

To switch a processor’s execution level from privileged
to unprivileged, software can simply change CONTROL[0]
to 1 using the msr (move-to-system-register) instruction. To
switch from unprivileged to privileged, software makes a
SuperVisor Call (SVC) with the svc instruction. When a
higher priority interrupt or exception occurs, the processor
automatically pushes eight registers, including R0-R3, R12,
link register (LR), program counter (PC), and program status
register (xPSR) to the current stack. Then, the processor gen-
erates a special exception return value named EXC_RETURN
(0xFFFFFF**), stores it in LR, and executes the Interrupt
Service Routine (ISR), e.g., SVC handler. When an ISR
exits and EXC_RETURN is copied to the PC, the processor
will automatically perform unstacking, which pops the eight
registers off the stack. The hardware-assisted mechanism of
stacking and unstacking makes it possible to develop C-
language-only interrupt handlers.

B. Comparing Mobile and Embedded TEEs: A Case Study of
Arm Cortex-A and Cortex-M TrustZone

Arm TrustZone is a hardware-assisted TEE that splits
system-on-chip resources between two execution states, non-
secure and secure. Software running in the secure state can
access all resources, whereas software in the non-secure
state can only access non-secure resources. First introduced
with Cortex-A [18], TrustZone has been recently extended
to Cortex-M [33]–[35], but streamlined and optimized for
performance. In this section, we will discuss some differences
between the Cortex-A and Cortex-M TrustZone architectures
and their associated security features.

TrustZone State Switches. As shown in Figure 2, Cortex-
A TrustZone uses a dedicated secure monitor mode (EL3)
to handle the secure state transitions. The processor will be
running at the secure state while in the monitor mode, and uses
the NS bit in the Secure Configuration Register (SCR) to define
the operation state to which the CPU will switch after the
monitor mode. Therefore, any cross-state transitions will go
through the single entry point – the privileged secure monitor
mode – via the secure monitor call instruction (smc). Different
from Cortex-A TrustZone, which indicates the security state
in the secure configuration register, the division of states
in Cortex-M TrustZone is based on memory regions. When
running code in the secure memory, the processor is in the
secure state. Otherwise, the processor is in the non-secure
state. State switches in Cortex-M TrustZone can occur through
function calls (blxns) and returns (bxns), resulting in an
unlimited number of entries between secure and non-secure
privilege levels.

Non-secure State Secure State

Unprivileged
Level

Privileged
Level

Unprivileged
Level

Privileged
Level

Secure Monitor Mode

Unprivileged
Level

Privileged
Level

Unprivileged
Level

Privileged
Level

Function
call and return

Non-secure State Secure State

Exception and return

Cortex-A Cortex-M

Fig. 2. State switches on Cortex-A TrustZone must go through the privileged
secure monitor mode, whereas state switches on Cortex-M can occur between
different secure and non-secure privilege levels.

Other Differences: Pointer Authentication Code (PAC)
as an Example. In addition to TrustZone, there are variations
in other security features between Cortex-A and Cortex-M. For
instance, as shown in Table I and Table II, the key management
mechanisms of the Pointer Authentication (PA) security exten-
sion for Cortex-A [36] and Cortex-M [37] with TrustZone are
different. The newly introduced PA instructions can generate
and verify a keyed tweakable pointer authentication code for
a pointer or data with the QARMA block cipher. Cortex-M
with TrustZone integrates four 128-bit PA key registers across
two security states. In contrast, the Cortex-A platform has
five key registers without segregation based on security states.
These registers can only be modified using the privileged msr

Cortex-A PA Key Registers Used at Config. at
APIAKey_EL1
APIBKey_EL1 All EL1
APDAKey_EL1 exception and
APDBKey_EL1 levels higher
APGAKey_EL1

TABLE I
THE FIVE 128-BIT ARMV8-A PA KEYS AND THEIR USAGE AND

CONFIGURATION SETTINGS.

Cortex-M PA Key Registers Used at Config. at
PAC_KEY_U_NS U-NS P-NS and P-S
PAC_KEY_P_NS P-NS P-NS and P-S
PAC_KEY_U_S U-S P-S
PAC_KEY_P_S P-S P-S

TABLE II
THE FOUR 128-BIT ARMV8-M PA KEY REGISTERS AND THEIR USAGE
AND CONFIGURATION SETTINGS. U-NS: UNPRIVILEGED NON-SECURE,
P-NS: PRIVILEGED NON-SECURE, U-S: UNPRIVILEGED SECURE, P-S:

PRIVILEGED SECURE.

instruction. The secure state privileged code can modify both
keys of the non-secure state in Cortex-M. Additionally, in
Cortex-M the PAC is stored separately from the pointer it
protects, whereas in Cortex-A the PAC is embedded within
the most significant bits of the pointer itself as no existing
system uses the full 64-bit address space.

III. LIMITATIONS OF EMBEDDED AND IOT TEES

In this section, we share a perspective on three key sources
that contribute to the limitations observed in existing embed-
ded TEEs and TEE-based solutions.

A. Security Limitations

Existing TEEs offer limited security guarantees at the hard-
ware layer.

• (S1) The hardware of all existing TEEs are proprietary
and must be trusted blindly. It is hence impossible to
verify the correctness of the hardware design or attest
the hardware states at run-time.

• (S2) The hardware Trusted Computing Bases (TCBs) of
existing TEEs are static and cannot be customized for
different applications. In particular, TrustZone TEE has
the highest privilege to control the REE and communi-
cate with all peripherals, which violates the principle of
least privilege by including unnecessary peripherals and
exposing them to malicious peripheral attacks [38].

• (S3) Embedded TEEs, e.g., Cortex-A and Cortex-M
TrustZone, only provide one enclave and cannot meet the
needs of multiple enclaves for sophisticated applications,
in which the trusted firmware, OS, and applications
execute.

• (S4) Embedded TEEs do not encrypt memory, leaving
them vulnerable to cold boot attacks [21].

• (S5) The TEE shares a processor core with the REE in a
time-sliced fashion, making it vulnerable to cache side-
channel attacks [22]–[24].

BYOTEE: Building Your Own Trusted
Execution Environments Using FPGA

(AsiaCCS’24)

SHERLOC: Secure and Holistic
Control-Flow Violation Detection on

Embedded Systems (CCS’23)

RET2NS: Return-to-Non-Secure
Vulnerabilities on ARM Cortex-M

TrustZone (DAC’23)

Trustworthy embedded TEE hardware
(S1, S2, S3, S4, S5, S6, V2) (Hardware, OS)

(Physical isolation, least privilege, parallelism)

Trustworthy embedded TEE software
(V1, V3) (OS, Compiler)
(Bridging semantic gap)

 Deployable TEE-based security solutions
 (P1, P2) (OS, Compiler)

 (Function offloading, reduced context switches)

Fig. 3. Recently publications from CactiLab on embedded and IoT TEEs. The addressed issues, implementation layers, and guiding principles are shown in
red, blue, and purple, respectively.

• (S6) Unlike SGX, embedded TEEs do not have native
hardware support for remote software attestation.

B. Inherent Semantic Gap

The inherent semantic gap between the TEE and the REE,
the vulnerabilities in the large TEE software TCBs, and the
wide REE-TEE transition surface lead to confused deputy
attacks with severe consequences.

• (V1) The TEE has very limited visibility into the REE’s
security mechanisms, introducing an inherent semantic
gap. On Cortex-A, confused deputy attacks exploiting this
semantic gap can allow an REE application to read and
write any memory location in the kernel by tricking the
TEE to perform the operations [39].

• (V2) The software TCBs in TEEs are large, creating big
surfaces for control-flow hijacking attacks [40], [41]. For
example, OP-TEE, a Cortex-A TEE OS, has 277K source
lines of code (SLOC) [42], and TF-M [43], a Cortex-M
TEE OS, has over 117K SLOC.

• (V3) Different from the Cortex-A TrustZone, which only
has the secure monitor mode for REE-TEE context
switches, embedded TEEs, e.g., Cortex-M TrustZone,
support an unlimited number of TEE entrances through
the SG instruction and exits through the BXNS and
BLXNS instructions. We have found that the wide REE-
TEE transition surface introduces new confused deputy
vulnerabilities and also makes their exploitation easier.
Therefore, it is challenging to implement a secure channel
between a non-secure software component and a secure
software component, as SeCReT [44] does for the Cortex-
A TrustZone.

C. Performance Overhead

Existing TEE hardware and software introduce significant
performance overhead, rendering TEE-based security solutions
impractical for real-world deployment.

• (P1) Existing TEEs time-share a processor core with
REEs, and the frequent context switches between them
are very expensive [45], [46]. For example, the state-of-
the-art TrustZone-based backward-edge only CFI solu-
tions [25], [26] and CFA [47] introduce very high run-
time overhead.

• (P2) The aforementioned large software TCBs in TEEs
also lead to slow performance.

IV. OUR RECENT ATTEMPTS

Given the fundamental roles TEEs may play in securing
embedded and IoT systems, it is thus imperative to take
approaches to increase the trustworthiness and deployability
of embedded TEEs and TEE-based security solutions. To
this end, CactiLab conducted three projects in this direction
recently as shown in Figure 3. In the first project, BYOTEE,
we present an approach to build trustworthy embedded TEE
hardware, attempting to lay a secure hardware foundation for
the TEE software. In the second project, RET2NS, we address
a particular type of software vulnerability in embedded TEE to
help create trustworthy embedded TEE software and a secure
software base for TEE-based security solutions. Building on
top of the previous two projects, in the third project, SHER-
LOC, we develop a security solution with novel algorithms
and architectures in the embedded TEE to secure the control-
flow transfers in the embedded REE. In the remainder of this
section, we delve into the research questions, challenges, and
high-level concepts for each of these projects.

A. BYOTEE: Building Your Own Trusted Execution Environ-
ments Using FPGA

TEEs are a foundational primitive in confidential com-
puting. Existing TEEs, however, have the aforementioned
security limitations. This raises an important research question:
How to design a novel TEE paradigm and infrastructure
that overcomes the security limitations of existing TEEs?
Specifically, the novel TEE should have the following security
and functional properties: (i) unlike TrustZone, the paradigm
should offer multiple enclaves at the same time and guarantee
the secrecy and integrity of the Security-Sensitive Applications
(SSA) running inside each; (ii) the hardware resources of each
enclave should be physically isolated from the REE and other
enclaves to mitigate side-channel attacks; (iii) the hardware
TCB of each enclave should be customizable, allowing for a
minimal hardware TCB. Resorting to the formal verification
of the customized hardware [48], [49], the size of hardware
TCB can be further reduced; (iv) trusted I/O paths between an
enclave and its peripherals; (v) enclaves should be able to se-
curely communicate with each other; (vi) the paradigm should
provide mechanisms to attest the integrity of an enclave’s
hardware and software stacks; and (vii) the infrastructure
should be easy to use, especially for software developers who
do not have hardware programming experience.

1) Related work by others and their limitations: Many
software- or hardware-based solutions have been proposed to
address one or more limitations of existing TEEs. Among
them, TEEOD [50] is the most related. Compared to TEEOD,
BYOTEE offers additional security features, such as trust
bootstrap and software- and hardware-based attestation. More-
over, we discuss previous efforts on addressing the single TEE
issue, isolated I/O paths, and the limitations of other hardware-
based solutions.

The Single TEE Issue of TrustZone. vTZ [51] provides
each virtual machine with a virtualized TEE by running a
monitor within the secure world. SANCTUARY [52] utilizes the
memory access controller to provide multi-domain isolation.
TrustICE [53] creates multiple computing environments in
the normal domain and runs a monitor in the secure world.
uTango [54] uses the secure attribution unit of Cortex-M to
create multiple secure execution environments. On RISC-V,
KeyStone [55] utilizes the Physical Memory Protection (PMP)
feature to create multiple enclaves. The TEE and REE in these
solutions time-share the CPU and other hardware resources,
resulting in side-channel attacks.

Isolated I/O Paths and Mitigating Side-channel Attacks.
CURE [56] enables the exclusive assignment of system re-
sources to single enclaves. Composite Enclaves [57] builds
on top of KeyStone [55] and extends the TEE to several
hardware components. HECTOR-V [58] uses a dedicated
processor as a TEE with configurable peripheral permissions.
CURE, Composite Enclaves, and HECTOR-V rely on the PMP
feature of RISC-V. SGXIO [59] presents a hypervisor-based
trusted path architecture for SGX. SGX-FPGA [60] builds a
secure path between the CPU and FPGA. To eliminate side-
channel attacks, Sanctum [61] combines invasive hardware
modifications with a trusted software monitor on RISC-V.

Building TEEs with Other Hardware. Graviton [62] and
StrongBox [63] offload security-sensitive code and data to a
GPU. Ambassy [64] and MeetGo [65] use FPGA to construct
TEEs, but they do not include softcore CPUs. Dedicated
processor solutions, such as Google Titan [66], Samsung
eSE [67], and Apple SEP [68], use external connections be-
tween the REE and TEE, making them vulnerable to physical
probing attacks [58]. BYOTEE is also inspired by other iso-
lated execution environment solutions, including Flickr [69],
TrustVisor [70], and Haven [71].

2) Our Approach: We presented a hardware and soft-
ware co-design framework to Build Your Own Trusted
Execution Environments (BYOTEE). BYOTEE utilizes com-
modity System-on-Chip (SoC) Field Programmable Gate Ar-
rays (FPGAs), e.g., AMD EPYC FPGA-infused CPU or
Xilinx SoC FPGA, without requiring any hardware changes.
With the BYOTEE toolchain, users can quickly and easily
build multiple secure and customized enclaves on-demand
to execute their Security-Sensitive Applications (SSA). Each
enclave is designed to include only the hardware and software
necessary for the SSA and excludes other hardware and
software components on the system, minimizing the sizes of
hardware and software TCB.

BYOTEE utilizes the secure configuration process of the
FPGA to establish a dynamic root of trust that ensures com-
plete isolation and untampered execution of Security-Sensitive
Applications (SSAs) in enclaves from preexisting software on
the hardcore system, including the hypervisor and operating
system. Additionally, BYOTEE offers both software- and
hardware-based remote attestation mechanisms that operate
under two threat models. To enable the execution of SSAs,
external libraries and drivers for peripherals are required. On
the software front, the configurable firmware component of
BYOTEE provides essential software libraries such as libc, as
well as a Hardware Abstraction Layer (HAL), to minimize the
software Trusted Computing Base (TCB).

In BYOTEE, we assume adversaries can compromise the
hardcore system at boot-time or runtime, which means applica-
tions, kernel, and hypervisor are malicious. The compromised
software on the hardcore system can send arbitrary data to the
firmware and SSAs in enclaves via shared DRAM regions and
to the enclave hardware pins, such as interrupts. Adversaries
can also perform cold-boot attacks to dump the content in
DRAM. For software running on the softcore CPUs, we
first consider a baseline model (BaseModel) as the baseline
design. We then consider BYOTEE under an enhanced attack
model (EnhancedModel). In BaseModel, the software in an
enclave, including the firmware and SSA, is trusted and bug-
free. The hardcore system cannot compromise the firmware or
SSA at runtime, and remote attestation can be implemented
in the firmware. This model is similar to the Arm TrustZone
model where software-based attestation is trustworthy [72],
[73]. However, this model is not realistic as the firmware and
SSAs may have bugs that can be exploited by REE inputs [20],
[39]. In EnhancedModel, we assume that the firmware and
SSAs are buggy and can be compromised. Therefore, the
measurement code and keys cannot be kept in the same address
space as the firmware and SSAs. This model is similar to
the Intel SGX and Arm Cortex-A CCA model where trusted
hardware components of the CPU perform remote attestation.

The BYOTEE tools and codebase mainly include the
HARDWAREBUILDER, HW-ATT for the EnhancedModel,
FIRMWARE, and SSAPACKER. During the development stage,
the HARDWAREBUILDER generates synthesizer commands
based on the SSA’s needs specified in the developer’s hardware
description JSON input. Then, the vendor-provided synthe-
sizer, e.g., Xilinx Vivado or Intel Quartus Prime, generates the
bitstream file using the synthesizer commands. The bitstream
and FIRMWARE binary are encrypted, signed, and packed by
the vendor-provided merger, e.g., UpdateMEM from Xilinx,
into a protected bitstream. The SSA binary is encrypted,
signed, and packed by the SSAPACKER into a protected
SSA. When the bitstream is loaded onto the FPGA, multiple
enclaves can be created and FIRMWARE starts running. Then,
an untrusted application can trigger the loading of a protected
SSA into an enclave.

3) Results: We implemented the BYOTEE system and
toolchain for the Xilinx SoC FPGA. We open-sourced the

system and toolchain2. We have also demonstrated BY-
OTee’s usage, security, effectiveness, and performance with the
Embench-IoT benchmark and four SSAs, i.e., a computational
application, a peripheral-interacting application, a peripheral-
and hardcore system-interacting application, and a distributed
application. on the low-end MicroBlaze softcore CPU and
Zynq-7000 system.

B. RET2NS: Return-to-Non-Secure Vulnerabilities on Arm
Cortex-M TrustZone

Confused deputy vulnerabilities exist when a more privi-
leged program is tricked by a less privileged but malicious
program into misusing its authority. The inherent semantic gap
between a privileged program and a less privileged domain,
e.g., hypervisor’s view of a virtual machine [74] and TrustZone
TEE’s view of the REE memory [39], inevitably leads to
confused deputy vulnerabilities. To achieve high performance,
the embedded TEEs have a wide REE-TEE transition surface,
which introduces new types of confused deputy vulnerabili-
ties. This raises a key question: Will these confused deputy
vulnerabilities on embedded TEEs lead to serious attacks? If
yes, how to mitigate such attacks? Specifically, we explore if
Cortex-M TrustZone’s support of an unlimited number of TEE
entrances through the SG instruction and TEE exits through
the BXNS and BLXNS instructions can be easily exploited for
privilege escalation. Additionally, we design (i) a detection
system that performs data-flow analysis to track data passed
from the REE application and annotates the BXNS and BLXNS
instructions that use the data as the branch destination; and
(ii) an address sanitization approach that instruments checks
before the unsafe BXNS and BLXNS instructions.

1) Related work by others: Ret2usr [75], ret2dir [76],
and boomerang [39] are disclosed confused deputy attacks
on microprocessors with MMUs, e.g., x86 or Cortex-A, and
on modern operating systems, e.g., Linux. The premise of
the ret2usr attack [75] lies in leveraging a legitimate but
compromised kernel function, which is manipulated to return
not to its original caller in the kernel space, but instead to an
attacker-specified location in the user space. This redirection
allows malicious user-level code to be executed with the
elevated privileges of kernel mode, effectively bypassing the
protections inherent in separating user and kernel spaces.

Ret2dir attacks are a form of confused deputy attacks that
exploit a feature of modern operating systems: direct kernel
mappings of physical memory [76]. These attacks maneuver
around protections against ret2usr attacks by redirecting kernel
operations not to user space, but to a virtual memory region
within the kernel space itself. This region directly maps all
or part of the physical memory, allowing for unauthorized
access or modifications. Unlike ret2usr, ret2dir attacks bypass
traditional defenses, as the malicious code remains within the
kernel space.

Boomerang attacks represent a type of confused deputy
attacks that target systems implementing Cortex-A Trust-
Zone [39]. These attacks manipulate the TrustZone’s secure

2https://github.com/CactiLab/BYOTee-Build-Your-Own-TEEs

state applications to gain unauthorized access to restricted
memory regions. This is achieved by making a non-secure
application request the secure state application to execute an
operation that shouldn’t be permissible from the non-secure
state. In effect, the secure application acts as a “boomerang,”
returning with sensitive data or causing alterations that the
non-secure application should not access or perform.

To mitigate ret2usr attacks, kGuard [75] instruments run-
time control-flow checks to verify the indirect branch target is
always in kernel space and enforces lightweight address space
segregation. To patch the ret2dir vulnerability, XPFO [76]
uses an exclusive ownership scheme for the Linux kernel that
prevents the implicit sharing of physical memory. To thwart
boomerang attacks, a cooperative approach [39] requires that
all of the non-secure memory accesses from the secure state
need to query a non-secure callback function to verify the
access permission of the referenced memory region.

2) Our Approach: In RET2NS, we report a new class of
confused deputy attacks, namely return-to-non-secure attacks,
that exploit the fast state switch mechanism of the Cortex-
M TrustZone. More dangerous than boomerang, RET2NS can
lead to arbitrary code execution with escalated privilege in
the non-secure state. Ret2ns is a new type of return-to-user
(ret2usr) attacks [75], [76] that redirects compromised secure
state pointers to code residing in non-secure state userspace.
The wide state transition surface on Cortex-M also makes
the exploitation of ret2ns vulnerabilities easier than exploiting
ret2usr on x86 or boomerang on Cortex-A. Ret2ns attacks
affect all Cortex-M processors with TrustZone, including
M23 [77], M33 [78], M35P [79], M55 [80], and M85 [81].
We also argue RET2NS vulnerabilities are likely to exist in any
TEE implementations that allow direct control-flow transfers
from secure state to non-secure userspace programs but keep
executing at the privileged level.

Based on the non-secure execution mode that an attack
originates from, we break RET2NS attacks into two categories:
handler-mode-originated and thread-mode-originated attacks.
Attacks in the former category are more likely to happen in
RTOSes, whereas attacks in the latter category are likely to
occur in security-enhanced bare-metal systems that support
privilege separation. Attacks in either category can be further
attributed to an indirect branch case using bxns or an indirect
call case using blxns, resulting in four variants of RET2NS
attacks.

In the handler-mode-originated attacks, a userspace program
under the attacker’s control makes a supervisor call, so the
processor enters the handler mode and IPSR is updated to
11 (the interrupt number of SVC). The SVC handler in turn
calls a non-secure callable (NSC) function, and the processor
switches to the secure state. Because IPSR is shared between
the secure and non-secure state, the secure state program keeps
executing in the handler mode with privilege. In a legitimate
control path, when the secure state program exits back to the
non-secure state using bxns, the control returns to the SVC
handler. However, if the bxns instruction uses a corrupted
code pointer as the destination, the processor can return to

any location, e.g., userspace program, in the non-secure state
and keep executing it in the handler mode with privilege.
Another attack path exists when a secure state program makes
an indirect call (blxns) with a corrupted code pointer. In this
case, IPSR has the value of 1. In the thread-mode-originated
attacks, the attacker-controlled unprivileged program uses an
SVC call to escalate the non-secure privilege level with the
CONTROL_NS.nPRIV bit cleared, after which a privileged
program in the thread mode executes. The privileged program
in turn calls an NSC function in the secure state. The NSC
function will call the secure state program, which eventually
returns the control to the non-secure state (using bxns) or
calls a non-secure callback function (using blxns). When a
memory corruption vulnerability in the secure state program
leads to a corrupted code pointer, the control flow will transfer
to an attacker-controlled program in the non-secure state.
Since the non-secure state has CONTROL_NS.nPRIV cleared,
the attacker-controlled program will keep executing in the
privileged thread mode.

The key to preventing RET2NS attacks is to disallow the
execution of non-secure userspace programs at the privileged
level. On the planned Cortex-M55 and M85 microcontrollers,
this can be achieved with negligible overhead by properly
setting up the MPU regions with PXN. However, there are
two limitations of the PXN approach: (1) Cortex-M23, M33,
and M35P microcontrollers that hold a large market share
do not have the PXN feature; (2) only a small number of
MPU regions, e.g., 8 or 16, are supported, thus it is not fine-
grained enough for complex RTOSes. To address these issues,
we present two mechanisms, namely (i) MPU-assisted address
sanitizer and (ii) address masking, which can effectively
mitigate RET2NS attacks for all Cortex-M microcontrollers
with TrustZone.

3) Results: We experimentally confirmed the feasibility of
four variants of RET2NS attacks on two Cortex-M hardware
systems. To defend against RET2NS attacks, we designed
two address sanitizing mechanisms that have negligible per-
formance overhead. We open-sourced our project3, which
includes vulnerable code examples, proof-of-concept exploits,
and defense instrumentation.

C. SHERLOC: Secure and Holistic Control-Flow Violation
Detection on Embedded Systems

Control-Flow Integrity (CFI) is a basic security property that
can prevent control-flow hijacking by dictating that indirect
control transfers, e.g., indirect call/branch and return, must
follow a predetermined Control-Flow Graph (CFG). The CFI
property can be enforced by inline instrumentation or trace-
based control-flow violation detection. Existing CFI enforce-
ment approaches in both categories for embedded and IoT
systems are either incomplete (e.g., only consider unprivileged
code or backward-edges), insecure (e.g., the trace can be
overwritten by adversaries), or inefficient (e.g., overhead that
makes them impractical for real-world deployments). This

3https://github.com/CactiLab/ret2ns-Cortex-M-TrustZone

raises an important research question: How to design a secure
and efficient control-flow integrity enforcement algorithm
and mechanism on forward- and backward-edges of both
privileged and unprivileged code for embedded devices?
Specifically, the new algorithm and mechanism should have
the following design goals: (i) it must enforce CFI for both
unprivileged and privileged code; and (ii) it must enforce both
forward and backward edge CFI.

1) Related work by others and their limitations: Inline
instrumentation inserts a label at a destination and a check
before a source [13]. It also inserts shadow stack [13], [82],
[83] or return address [40] checks in the prologue and epilogue
of a function. It is, however, impractical on embedded devices:
(i) instrumentation increases the binary size and changes the
memory layout, which is not an issue for memory-rich devices
but infeasible for embedded devices with limited memory. To
preserve the memory layout, CaRE [25] replaces function calls
and indirect branches with dispatch instructions at the cost of
a 513% performance overhead; (ii) shadow stacks need to be
protected. RECFISH [84], which only protects unprivileged
code, maintains shadow stacks at the privileged level and
introduces a 30% overhead. TzmCFI [26] maintains shadow
stacks in the TrustZone secure world and introduces an 84%
overhead. Silhouette [41] and Kage [85] use unprivileged store
instructions to achieve a low overhead of 3.4% and 5.2%,
respectively; nonetheless, Silhouette only works for bare-metal
applications, and Kage only supports a small number of tasks.

Trace-based Control-Flow Violation Detection (CFVD) does
not instrument the target software or change its memory
layout, and it has the potential for superior performance. Ex-
isting approaches, e.g., CFIMon [86], FlowGuard [87], GRIF-
FIN [88], and PT-CFI [89], nevertheless have these limitations:
(i) they only monitor unprivileged code because the traces need
to be stored at secure memory regions, which leads to three
issues: (1) they do not directly apply to embedded systems,
which mostly execute at the privileged level; (2) they require
kernel changes and bloat the size of TCB by including the
kernel [86]–[91]; (3) to reduce the number of context switches
between userspace and kernel, their violation analysis is only
triggered by an incomplete list of system calls [86]–[89],
[91]. Intel’s Last Branch Record (LBR)-based approaches, e.g.,
CFIGuard [90] and PathArmor [91], store traces in several reg-
isters, but they are vulnerable to flushing attacks [92], [93]; (ii)
they rely on advanced debugging features, e.g., trace filtering
and labeling of Intel Branch Trace Store (BTS) and Processor
Trace (PT) [94], to filter legitimate asynchronous noises [87]–
[89], e.g., interrupts and process/task context switches. But
these features are not available on embedded debugging units.

2) Our Approach: In SHERLOC, we formalized the defini-
tions of the existing application-oriented CFVD mechanism
and the proposed system-oriented CFVD mechanism. Cur-
rent CFVD mechanisms for desktop systems with memory
virtualization only monitor a specific userland application.
We model the interprocedural CFG of such an application
A as GA = (VA, EA), where VA is the set of basic blocks
and EA is the set of control-flow transfers defined by the

application. Existing approaches configure hardware tracing
units, such as Intel Processor Trace [94], to record only certain
control-flow transfers, such as indirect calls/jumps and returns,
within a single application A and exclude synchronous and
asynchronous control-flow transfers of other applications or
the kernel. We model each trace record as a 2-tuple r = ⟨s, d⟩
where s is the virtual source address and d is the virtual
destination address. The ACFVD solution verifies each indirect
control-flow transfer must match an edge in the GA:

Application-oriented CFVD (ACFVD). Given the trace
RA = (r0, r1, . . . , rn) of an application A, ACFVD verifies
that ri ∈ EA, ∀i ∈ {0, 1, . . . , n}.

ACFVD approaches require the modification of the kernel
to capture and analyze traces, which makes it difficult to
extend them to monitor privileged code or the kernel itself.
Furthermore, to achieve better performance, many solutions
perform incomplete monitoring and mandate analyzing only
the traces that lead to specific system calls, such as execve,
mmap, and mprotect.

We model a microcontroller-based software system S in-
cluding a kernel K and tasks T as (GS , IK, YT), where GS is
its interprocedural CFG, IK is the set of asynchronous kernel
interrupt service routine addresses (e.g., timer handler), and
YT is the set of task entry or re-entry addresses. In particular,
GS is modeled as (VS , ES), where VS is the set of basic
blocks of tasks and the kernel, and ES is the set of control-flow
transfers defined by the tasks and the kernel. Please note that
ES also models synchronous exceptions that involve control-
flow transfers across privilege levels, such as system calls.
At system boot, YT = YT E

⋃
YT R is initially composed of

statically retrieved entry addresses of all tasks YT E , which
may be dynamically replaced by re-entry addresses YT R when
context switches occur. The SCFVD solution verifies each
indirect control-flow transfer must match an edge in the GS
or the destination of each asynchronous control-flow transfer
must match an address in the IK or YT :

System-oriented CFVD (SCFVD). Given the trace RS =
(r0, r1, . . . , rn) of a system S including a kernel K and tasks
T , SCFVD verifies that ri ∈ ES

∨
ri.d ∈ IK

⋃
YT , ∀i ∈

{0, 1, . . . , n}.

We presented Secure and Holistic Control-Flow Violation
Detection (SHERLOC) for microcontroller-based embedded
systems. To ensure security, SHERLOC configures the hard-
ware tracing unit, stores the trace records, and executes the
CFVD algorithm in a trusted execution environment (TEE),
so even the non-secure state privileged program cannot by-
pass the monitoring or tamper the traces. To achieve holistic
monitoring, SHERLOC provides a mechanism that not only
monitors the forward and backward edges of unprivileged and
privileged programs but also the control-flow transfers among
unprivileged and privileged components. Specifically, SHER-
LOC addresses the challenges of identifying legitimate asyn-
chronous interrupts and context switches among applications

at run-time with an interrupt- and scheduling-aware violation
detection algorithm. To improve performance, SHERLOC can
also enforce more practical policies, such as analyzing traces
only when certain operations, such as changing system regis-
ters, are triggered.

SHERLOC comprises offline analysis and runtime config-
uration and enforcement modules. To validate an indirect
or asynchronous control-flow transfer, SHERLOC requires an
over-approximated CFG, a list of asynchronous ISR addresses,
and entry and re-entry addresses of all RTOS tasks. An over-
approximated CFG may result in a higher false negative rate,
but it guarantees no false positives. The offline analysis module
only produces the set of legitimate indirect forward edges from
the generated CFG and entry addresses of all RTOS tasks.
SHERLOC runtime modules can retrieve asynchronous ISR
addresses directly from the non-secure state vector table (VT)
on SRAM or flash by reading the vector table offset register
(VTOR_NS). The indirect backward edges, i.e., returns, and
the re-entry addresses of tasks are maintained dynamically by
the SHERLOC runtime enforcement module.

Besides holistic runtime enforcement, SHERLOC also sup-
ports event-triggered runtime enforcement, providing a trade-
off between security and performance. Similar to the exist-
ing implementations of application-oriented CFVD [86]–[88],
[90], [91], the enforcement can be triggered by some sensitive
events, such as calling a certain kernel API (similar to system
calls on desktop) and modifying a particular system register
(e.g., changing memory permissions).

3) Results: We implemented SHERLOC for the ARMv8-
M architecture and evaluate its performance using embedded
benchmark programs, bare-metal systems, and a real-time
operating system. Our evaluation results demonstrated that
SHERLOC is secure, effective, and efficient. We open-sourced
SHERLOC4.

V. RECOMMENDATION AND FUTURE DIRECTIONS

Explore the pros and cons of new trusted execution envi-
ronment features: The hardware features of each TEE design
differ, especially with embedded TEEs exhibiting streamlining
and distinctions from their microprocessor counterparts. This
distinction encompasses various aspects, extending from the
microarchitectural layer up to the instruction set architecture.
It influences not only the underlying hardware design but also
the operational characteristics and capabilities of the TEEs.
Understanding these differences is crucial for comprehending
the unique challenges and opportunities associated with em-
bedded TEEs as opposed to their microprocessor counterparts.

Explore the integration of TEE with additional security
features: Embedded platforms bring forth a multitude of
distinct hardware and security features that set them apart from
their microprocessor counterparts. Investigating the synergies
between TEEs and these additional security features becomes
imperative for comprehensively understanding the security
landscape in embedded systems. This exploration will shed

4https://github.com/CactiLab/Sherloc-Cortex-M-CFVD

light on how the integration of TEEs with other security
measures can enhance overall system resilience and protection
against diverse threats.

VI. CONCLUSION

TEEs have been offered in CPUs of embedded and IoT
platforms as a foundational primitive for security. The hard-
ware and software layers of existing TEEs nevertheless have
been criticized for lack of transparency, full of vulnerabilities,
and various restrictions, which means the existing TEEs and
TEE-based security solutions are untrustworthy, ineffective,
or inefficient. In this paper, we share our perspective on
the challenges and limitations related to embedded TEEs.
Additionally, we delve into three recently published projects
from CactiLab, which aim to tackle challenges presented in
embedded TEEs and TEE-based solutions at various layers.

ACKNOWLEDGMENT

This material is based upon work supported in part by
National Science Foundation (NSF) grants (2237238 and
2329704), a National Centers of Academic Excellence in
Cybersecurity grant (H98230-22-1-0307), and the Air Force
Visiting Faculty Research Program. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of United States Government or any agency thereof.

REFERENCES

[1] P. Sparks, “The route to a trillion devices,” https://community.arm.co
m/iot/b/blog/posts/whitepaper-the-route-to-a-trillion-devices, online;
accessed 20 Apr 2021.

[2] FDA, “Certain Medtronic MiniMed Insulin Pumps Have Potential Cy-
bersecurity Risks: FDA Safety Communication,” https://www.fda.gov/
medical-devices/safety-communications/certain-medtronic-minimed-ins
ulin-pumps-have-potential-cybersecurity-risks-fda-safety-communicati
on, 2019.

[3] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz, and J. Lopez, “A
survey of iot-enabled cyberattacks: Assessing attack paths to critical in-
frastructures and services,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 4, pp. 3453–3495, 2018.

[4] Wikipedia, “Colonial pipeline cyber attack,” https://en.wikipedia.org/w
iki/Colonial Pipeline cyber attack.

[5] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in IEEE Symposium on Security and Privacy. IEEE, 2013,
pp. 48–62.

[6] A. van de Ven and I. Molnar, “Exec shield,” http://www.redhat.com/f/p
df/rhel/WHP0006US Execshield.pdf, 2004.

[7] N. R. Weidler, D. Brown, S. A. Mitchel, J. Anderson, J. R. Williams,
A. Costley, C. Kunz, C. Wilkinson, R. Wehbe, and R. Gerdes, “Return-
oriented programming on a cortex-m processor,” in 2017 IEEE Trust-
com/BigDataSE/ICESS. IEEE, 2017, pp. 823–832.

[8] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Return-
oriented programming without returns on arm,” in ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2010.

[9] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh,
“Hacking blind,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 227–242.

[10] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security,
2004, pp. 298–307.

[11] F. Y. Rashid, “The rise of confidential computing: Big tech companies
are adopting a new security model to protect data while it’s in use-
[news],” IEEE Spectrum, vol. 57, no. 6, pp. 8–9, 2020.

[12] D. P. Mulligan, G. Petri, N. Spinale, G. Stockwell, and H. J. Vincent,
“Confidential computing—a brave new world,” in 2021 international
symposium on secure and private execution environment design (SEED).
IEEE, 2021, pp. 132–138.

[13] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 13, no. 1, pp.
1–40, 2009.

[14] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
USENIX Security Symposium, pages=337–352, year=2013.

[15] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 575–589.

[16] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2014, pp. 577–587.

[17] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomization
for binary executables,” in 2013 IEEE Symposium on Security and
Privacy. IEEE, 2013, pp. 559–573.

[18] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[19] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell, “Design
and verification of the arm confidential compute architecture,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 2022, pp. 465–484.

[20] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted tee systems,”
in 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 1416–1432.

[21] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” Communications
of the ACM, pp. 91–98, 2009.

[22] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “TruSpy: Cache
Side-Channel Information Leakage from the Secure World on ARM
Devices,” IACR Cryptology ePrint Archive, vol. 2016, p. 980, 2016.

[23] H. Cho, P. Zhang, D. Kim, J. Park, C.-H. Lee, Z. Zhao, A. Doupé,
and G.-J. Ahn, “Prime+Count: Novel Cross-world Covert Channels on
ARM TrustZone,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC). ACM, 2018, pp. 441–452.

[24] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi, “Software grand exposure: Sgx cache attacks are practical,”
arXiv preprint arXiv:1702.07521, 2017.

[25] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “Cfi care: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2017, pp. 259–284.

[26] T. Kawada, S. Honda, Y. Matsubara, and H. Takada, “Tzmcfi: Rtos-
aware control-flow integrity using trustzone for armv8-m,” International
Journal of Parallel Programming, pp. 1–21, 2020.

[27] M. Armanuzzaman, A.-R. Sadeghi, and Z. Zhao, “Building Your Own
Trusted Execution Environments Using FPGA,” in ACM ASIA Confer-
ence on Computer and Communications Security, 2024.

[28] Z. Ma, X. Tan, L. Ziarek, N. Zhang, H. Hu, and Z. Zhao, “Return-to-non-
secure vulnerabilities on arm cortex-m trustzone: Attack and defense,”
in ACM/IEEE Design Automation Conference, 2023.

[29] X. Tan and Z. Zhao, “Sherloc: Secure and holistic control-flow violation
detection on embedded systems,” in ACM Conference on Computer and
Communications Security, 2023.

[30] Xilinx, “Zynq-7000 SoC Technical Reference Manual,” https://www.xi
linx.com/support/documentation/user guides/ug585-Zynq-7000-TRM.p
df, 2021.

[31] A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber, W. P. Burleson, and
K. Fu, “TARDIS: Time and Remanence Decay in SRAM to Implement
Secure Protocols on Embedded Devices without Clocks,” in USENIX
Security Symposium, 2012.

[32] J. Yiu, Definitive Guide to Arm Cortex-M23 and Cortex-M33 Processors.
Newnes, 2020.

[33] ARM, “Armv8-m architecture reference manual,” https://developer.arm.
com/documentation/ddi0553/bm/, online; accessed 15 Dec 2020.

[34] Arm, “Armv8-M Architecture Technical Overview,” https://community.
arm.com/cfs-file/ key/telligent-evolution-components-attachments/0

https://community.arm.com/iot/b/blog/posts/whitepaper-the-route-to-a-trillion-devices
https://community.arm.com/iot/b/blog/posts/whitepaper-the-route-to-a-trillion-devices
https://www.fda.gov/medical-devices/safety-communications/certain-medtronic-minimed-insulin-pumps-have-potential-cybersecurity-risks-fda-safety-communication
https://www.fda.gov/medical-devices/safety-communications/certain-medtronic-minimed-insulin-pumps-have-potential-cybersecurity-risks-fda-safety-communication
https://www.fda.gov/medical-devices/safety-communications/certain-medtronic-minimed-insulin-pumps-have-potential-cybersecurity-risks-fda-safety-communication
https://www.fda.gov/medical-devices/safety-communications/certain-medtronic-minimed-insulin-pumps-have-potential-cybersecurity-risks-fda-safety-communication
https://en.wikipedia.org/wiki/Colonial_Pipeline_cyber_attack
https://en.wikipedia.org/wiki/Colonial_Pipeline_cyber_attack
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://developer.arm.com/documentation/ddi0553/bm/
https://developer.arm.com/documentation/ddi0553/bm/
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-Armv8_2D00_M-Architecture-Technical-Overview.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-Armv8_2D00_M-Architecture-Technical-Overview.pdf

1-2142-00-00-00-00-66-90/Whitepaper- 2D00 -Armv8 2D00 M-Arc
hitecture-Technical-Overview.pdf.

[35] ARM, “Trustzone technology for the armv8-m architecture version 2.1,”
https://developer.arm.com/documentation/100690/latest/, online;
accessed 15 Dec 2020.

[36] Q. Technologies, “Pointer Authentication on ARMv8.3,” https://www.
qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/po
inter-auth-v7.pdf.

[37] Arm, “Armv8.1-M Pointer Authentication and Branch Target Identifica-
tion Extension,” https://community.arm.com/developer/ip-products/proc
essors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-a
nd-branch-target-identification-extension.

[38] M. Gross, N. Jacob, A. Zankl, and G. Sigl, “Breaking trustzone memory
isolation through malicious hardware on a modern fpga-soc,” in ACM
Workshop on Attacks and Solutions in Hardware Security Workshop
(ASHES), 2019.

[39] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “Boomerang:
Exploiting the semantic gap in trusted execution environments,” in
Network and Distributed System Security Symposium (NDSS), 2017.

[40] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “µ RAI:
Securing Embedded Systems with Return Address Integrity,” in Network
and Distributed Systems Security (NDSS) Symposium, 2020.

[41] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Silhouette:
Efficient protected shadow stacks for embedded systems,” in USENIX
Security Symposium, 2020, pp. 1219–1236.

[42] Linaro, “OP-TEE: Open Portable Trusted Execution Environment,” http
s://www.op-tee.org/, online; accessed 19 April 2021.

[43] ——, “Trusted Firmware M (TFM) v1.3.0 sourcec code,” https://git.tr
ustedfirmware.org/TF-M/trusted-firmware-m.git/tag/?h=TF-Mv1.3.0.

[44] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “SeCReT:
Secure Channel between Rich Execution Environment and Trusted
Execution Environment,” in Proceedings of the 2015 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb. 2015.

[45] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity.” in NDSS, 2016.

[46] P. Zhang, H. Cho, Z. Zhao, A. Doupé, and G.-J. Ahn, “icore: continuous
and proactive extrospection on multi-core iot devices,” in Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing, 2019, pp.
851–860.

[47] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-FLAT: control-flow attestation for
embedded systems software,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016, pp. 743–754.

[48] V. Sieh, O. Tschache, and F. Balbach, “Verify: Evaluation of reliability
using vhdl-models with embedded fault descriptions,” in Proceedings
of IEEE 27th International Symposium on Fault Tolerant Computing.
IEEE, 1997, pp. 32–36.

[49] P. T. Breuer, C. K. Delgado, A. L. Marin, N. Martinez Madrid, and
L. Sanchez Fernandez, “A refinement calculus for the synthesis of veri-
fied hardware descriptions in vhdl,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 19, no. 4, pp. 586–616, 1997.

[50] C. R. Sergio Pereira, David Cerdeira and S. Pinto, “Towards a Trusted
Execution Environment via Reconfigurable FPGA,” arXiv preprint
arXiv:2107.03781, 2021.

[51] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz: Virtualizing
ARM trustzone,” in USENIX Security Symposium, 2017, pp. 541–556.

[52] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANC-
TUARY: ARMing TrustZone with User-space Enclaves,” in Network and
Distributed System Security Symposium (NDSS), 2019.

[53] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice: Hardware-
assisted isolated computing environments on mobile devices,” in Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2015.

[54] D. Oliveira, T. Gomes, and S. Pinto, “utango: an open-source tee for
the internet of things,” arXiv preprint arXiv:2102.03625, 2021.

[55] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: An open framework for architecting trusted execution
environments,” in Proceedings of the Fifteenth European Conference
on Computer Systems, ser. EuroSys ’20. Association for Computing
Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3342195.
3387532

[56] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf, “CURE: A Security Architecture with CUstomiz-
able and Resilient Enclaves,” in USENIX Security Symposium, 2021.

[57] M. Schneider, A. Dhar, I. Puddu, K. Kostiainen, and S. Capkun, “Pie: A
dynamic tcb for remote systems with a platform isolation environment,”
arXiv preprint arXiv:2010.10416, 2020.

[58] P. Nasahl, R. Schilling, M. Werner, and S. Mangard, “Hector-v: A het-
erogeneous cpu architecture for a secure risc-v execution environment,”
arXiv preprint arXiv:2009.05262, 2020.

[59] S. Weiser and M. Werner, “Sgxio: Generic trusted i/o path for intel sgx,”
in ACM on Conference on Data and Application Security and Privacy
(CODASPY), 2017.

[60] K. Xia, Y. Luo, X. Xu, and S. Wei, “Sgx-fpga: Trusted execution
environment for cpu-fpga heterogeneous architecture,” in IEEE Design
Automation Conference (DAC), 2021.

[61] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware ex-
tensions for strong software isolation,” in USENIX Security Symposium,
2016.

[62] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on gpus,” in USENIX symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[63] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan, Z. He,
J. Cao et al., “Strongbox: A gpu tee on arm endpoints,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022.

[64] D. Hwang, S. Yeleuov, J. Seo, M. Chung, H. Moon, and Y. Paek,
“Ambassy: A Runtime Framework to Delegate Trusted Applications
in an ARM/FPGA Hybrid System,” IEEE Transactions on Mobile
Computing (TMC), 2021.

[65] H. Oh, K. Nam, S. Jeon, Y. Cho, and Y. Paek, “Meetgo: A trusted
execution environment for remote applications on fpga,” IEEE Access,
2021.

[66] S. Johnson, D. Rizzo, P. Ranganathan, J. McCune, and R. Ho, “Titan:
enabling a transparent silicon root of trust for Cloud,” in Hot Chips: A
Symposium on High Performance Chips, vol. 194, 2018.

[67] Samsung, “eSE Safeguard against digital attacks.” https://www.samsun
g.com/semiconductor/security/ese/, 2020.

[68] A. Inc, “Security enclave processor for a system on a chip.
US8832465B2.” https://patents.google.com/patent/US8832465, 2020.

[69] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for tcb minimization,” in Pro-
ceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, 2008, pp. 315–328.

[70] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “TrustVisor: Efficient TCB reduction and attestation,” in IEEE
symposium on Security and Privacy (S&P), 2010.

[71] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” in USENIX symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[72] “Arm Platform Security Architecture Security Model,” https://armkeil.
blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture
/Architect/DEN0079-PSA SM ALPHA-02.pdf.

[73] “PSA Attestation API ,” https://armkeil.blob.core.windows.net/develope
r/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA Att
estation API-1.0.1-2.pdf.

[74] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “Sok:
Introspections on trust and the semantic gap,” in 2014 IEEE symposium
on security and privacy. IEEE, 2014, pp. 605–620.

[75] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard:
Lightweight Kernel Protection against Return-to-User Attacks,” in
USENIX Security Symposium, 2012, pp. 459–474.

[76] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in USENIX Security Symposium, 2014, pp.
957–972.

[77] Arm, “Arm Cortex-M23 Processor Technical Reference Manual,” https:
//developer.arm.com/documentation/ddi0550/c.

[78] ——, “Arm Cortex-M33 Processor Technical Reference Manual Revi-
sion r1p0,” https://developer.arm.com/documentation/100230/latest.

[79] ——, “Cortex-M35P,” https://developer.arm.com/ip-products/processo
rs/cortex-m/cortex-m35p.

[80] ——, “Arm Cortex-M55 Processor Technical Reference Manual Revi-
sion r0p2,” https://developer.arm.com/documentation/101051/0002/.

https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-Armv8_2D00_M-Architecture-Technical-Overview.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-Armv8_2D00_M-Architecture-Technical-Overview.pdf
https://developer.arm.com/documentation/100690/latest/
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://www.op-tee.org/
https://www.op-tee.org/
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tag/?h=TF-Mv1.3.0
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tag/?h=TF-Mv1.3.0
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://www.samsung.com/semiconductor/security/ese/
https://www.samsung.com/semiconductor/security/ese/
https://patents.google.com/patent/US8832465
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079-PSA_SM_ALPHA-02.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079-PSA_SM_ALPHA-02.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079-PSA_SM_ALPHA-02.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.1-2.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.1-2.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.1-2.pdf
https://developer.arm.com/documentation/ddi0550/c
https://developer.arm.com/documentation/ddi0550/c
https://developer.arm.com/documentation/100230/latest
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m35p
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m35p
https://developer.arm.com/documentation/101051/0002/

[81] ——, “Arm Cortex-M55 Processor Technical Reference Manual Revi-
sion r0p2,” https://developer.arm.com/documentation/101924/0002/?lan
g=en.

[82] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
2015, pp. 555–566.

[83] N. Burow, X. Zhang, and M. Payer, “Sok: Shining light on shadow
stacks,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 985–999.

[84] R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C.
Ward, “Control-flow integrity for real-time embedded systems,” in 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[85] Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell,
“Holistic Control-Flow Protection on Real-Time Embedded Systems
with Kage,” in 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, 2022.

[86] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation
of control flow integrity using performance counters,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012). IEEE, 2012, pp. 1–12.

[87] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Transparent
and efficient cfi enforcement with intel processor trace,” in 2017 IEEE
International Symposium on High performance computer architecture
(HPCA). IEEE, 2017, pp. 529–540.

[88] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using intel
processor trace,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 585–598,
2017.

[89] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent backward-
edge CFVD using intel processor trace,” in Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy,
2017, pp. 173–184.

[90] P. Yuan, Q. Zeng, and X. Ding, “Hardware-assisted fine-grained code-
reuse attack detection,” in International Symposium on Recent Advances
in Intrusion Detection. Springer, 2015, pp. 66–85.

[91] V. Van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive cfi,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 927–940.

[92] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy,” in 20th USENIX Security Symposium (USENIX Security
11), 2011.

[93] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag,
and T. Holz, “Evaluating the effectiveness of current anti-ROP defenses,”
in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2014, pp. 88–108.

[94] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3C: System Programming Guide, Part 3,” https://www.intel.co
m/content/dam/www/public/us/en/documents/manuals/64-ia-32-archite
ctures-software-developer-vol-3c-part-3-manual.pdf.

https://developer.arm.com/documentation/101924/0002/?lang=en
https://developer.arm.com/documentation/101924/0002/?lang=en
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf

	Introduction
	Background
	Embedded and IoT Architectures: A Case Study of SoC FPGA and Arm Cortex-M
	Comparing Mobile and Embedded TEEs: A Case Study of Arm Cortex-A and Cortex-M TrustZone

	Limitations of Embedded and IoT TEEs
	Security Limitations
	Inherent Semantic Gap
	Performance Overhead

	Our Recent Attempts
	BYOTee: Building Your Own Trusted Execution Environments Using FPGA
	Related work by others and their limitations
	Our Approach
	Results

	Ret2ns: Return-to-Non-Secure Vulnerabilities on Arm Cortex-M TrustZone
	Related work by others
	Our Approach
	Results

	Sherloc: Secure and Holistic Control-Flow Violation Detection on Embedded Systems
	Related work by others and their limitations
	Our Approach
	Results

	Recommendation and Future Directions
	Conclusion
	References

