
Sherloc: Secure and Holistic Control-Flow Violation Detection on
Embedded Systems

Xi Tan
CactiLab, University at Buffalo

Buffalo, USA
xitan@buffalo.edu

Ziming Zhao
CactiLab, University at Buffalo

Buffalo, USA
zimingzh@buffalo.edu

ABSTRACT

Microcontroller-based embedded systems are often programmed
in low-level languages and are vulnerable to control-flow hijack-
ing attacks. One approach to prevent such attacks is to enforce
control-flow integrity (CFI), but inlined CFI enforcement can pose
challenges in embedded systems. For example, it increases binary
size and changes memory layout. Trace-based control-flow viola-
tion detection (CFVD) offers an alternative that doesn’t require
instrumentation of the protected software or changes to its mem-
ory layout. However, existing CFVD methods used in desktop sys-
tems require kernel modifications to store and analyze the trace,
which limits their use to monitoring unprivileged applications. But,
embedded systems are interrupt-driven, with the majority of pro-
cessing taking place in the privileged mode. Therefore, it is critical
to provide a holistic and system-oriented CFVD solution that can
monitor control-flow transfers both within and among privileged
and unprivileged components.

In this paper, we present Sherloc, a Secure and Holistic Control-
Flow Violation Detection mechanism designed for microcontroller-
based embedded systems. Sherloc ensures security by configuring
the hardware tracing unit, storing trace records, and executing the
violation detection algorithm in a trusted execution environment,
which prevents privileged programs from bypassing monitoring or
tampering with the trace. We address the challenges of achieving
holistic and system-oriented CFVD by formalizing the problem
and monitoring forward and backward edges of unprivileged and
privileged programs, as well as control-flow transfers among un-
privileged and privileged components. Specifically, Sherloc over-
comes the challenges of identifying legitimate asynchronous inter-
rupts and context switches at run-time by using an interrupt- and
scheduling-aware violation detection algorithm. Our evaluations
on the ARMv8-M architecture demonstrate the effectiveness and
efficiency of Sherloc.

CCS CONCEPTS

• Security and privacy → Embedded systems security; Oper-
ating systems security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623077

KEYWORDS

Control-flow violation detection; hardware tracing unit; trusted
execution environment

ACM Reference Format:

Xi Tan and Ziming Zhao. 2023. Sherloc: Secure and Holistic Control-Flow
Violation Detection on Embedded Systems. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’23),
November 26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3576915.3623077

1 INTRODUCTION

Microcontroller-based embedded and Internet of Things (IoT) sys-
tems lack memory management units (MMU) and memory vir-
tualization, yet they are ubiquitous and predicted to reach 1 tril-
lion by 2035 [44]. These systems are usually written in low-level
languages, e.g., C, whose lack of safety allow attackers to exploit
memory corruption bugs to hijack the control flow [45]. While data
execution prevention (DEP) and W⊕X can defeat code injection
attacks, these systems are still vulnerable to code reuse attacks, e.g.,
return-oriented programming (ROP) [12, 18, 50]. The situation is
exacerbated when many of these software systems are real-time
operating systems (RTOS) that are compiled and statically linked
with applications or bare-metal systems where applications execute
directly on hardware without an OS. Due to the lack of security
and fault isolation, a bug anywhere in such systems may lead to
serious consequences.

Control-flow integrity (CFI) is a security property that can pre-
vent control-flow hijacking by dictating that indirect control-flow
transfers, including forward edges (indirect call and branch) and
backward edges (return), must follow a predetermined control-flow
graph (CFG) [2–4]. The CFI property can be enforced by either
inlined instrumentation or trace-based control-flow violation detec-
tion (CFVD) mechanisms. The former instruments the application
or kernel software with run-time checks through static and/or dy-
namic source code or binary rewriting, while the latter relies on
hardware tracing features to capture and verify indirect control-
flow transfers.

The inlined instrumentation mechanism inserts a label at each
destination and a dynamic check before each source to ensure that
the run-time destination has the correct label for forward edges [4].
A variety of policies, which provides different levels of precision
to balance the trade-off between security and performance, have
been proposed and implemented for forward edges [13, 19, 24–
26, 30, 36, 46, 54, 56]. To ensure that a return transfers back to its
invoking callsite, backward CFI enforcement usually inserts shadow
stacks [4, 14, 17, 21] or return address integrity [5] maintenance
and checks in the prologue and epilogue of a function.

https://doi.org/10.1145/3576915.3623077
https://doi.org/10.1145/3576915.3623077

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xi Tan and Ziming Zhao

Inlined instrumentation, unfortunately, has several limitations
when deployed on embedded systems: (i) instrumentation increases
the binary size and changes the memory layout, which is sometimes
infeasible with a small memory of hundred Kilobytes. To preserve
the memory layout, CaRE [38], which only monitors bare-metal
systems, does not insert but replaces function calls and indirect
branches with dispatch instructions, incurring a high performance
overhead; (ii) they usually require the source code of the protected
system, which IoT vendors are reluctant to share, for compile time
instrumentation. In addition, it is difficult to protect shadow stacks
in such approaches. RECFISH [48], which only protects unprivi-
leged code, maintains shadow stacks at the privileged level. Tzm-
CFI [29] maintains shadow stacks in the TrustZone secure state
and introduces high run-time overhead. Both Silhouette [57] and
Kage [20] use unprivileged store instructions introduced in ARMv7-
M to achieve a low overhead; nonetheless, Silhouette only works
for bare-metal systems and Kage only supports a small number of
tasks due to the high memory overhead.

The trace-based control-flow violation detection mechanism
analyzes the instruction trace, which is usually collected by a
hardware unit. This approach doesn’t require instrumenting the
protected software, source code, or altering its memory layout,
making it a promising solution to enforce CFI on embedded sys-
tems. However, existing CFVD approaches used in desktop sys-
tems [23, 27, 34, 47, 51, 53] require kernel modifications to store
and analyze the trace; hence, they can only monitor unprivileged
applications, referred to as application-oriented CFVD. Therefore,
they are not directly applicable to embedded systems where it is nec-
essary to monitor the control-flow transfers within and among priv-
ileged and unprivileged components, referred to as system-oriented
CFVD. Additionally, to improve performance, their policies man-
date analyzing only those traces that result in specific system calls.
Some techniques, such as CFIGuard [53] and PathArmor [47], do not
store traces in memory but instead use special registers. However,
these methods are susceptible to history flushing attacks [41, 42].

In this paper, we present Sherloc – Secure and Holistic Control-
Flow Violation Detection for microcontroller-based embedded sys-
tems. To ensure security, Sherloc configures the hardware tracing
unit, stores the trace records, and executes the CFVD algorithm in
a trusted execution environment (TEE), so even non-secure state
privileged program cannot bypass the monitoring or tamper the
traces. To achieve holistic monitoring, Sherloc provides a mech-
anism that not only monitors the forward and backward edges
of unprivileged and privileged programs but also the control-flow
transfers among unprivileged and privileged components. Specifi-
cally, Sherloc addresses the challenges of identifying legitimate
asynchronous interrupts and context switches among applications
at run-timewith an interrupt- and scheduling-aware violation detec-
tion algorithm. To improve performance, Sherloc can also enforce
more practical policies, such as analyzing traces only when certain
operations, such as changing system registers, are triggered. In
addition, we model the detection latency of Sherloc and estimate
its upper bound.

We have implemented the offline analysis module of Sherloc
using both static and dynamic binary analysis techniques to gen-
erate an over-approximation of the interprocedural control-flow
graph for protected systems. Additionally, we have implemented

the runtime modules of Sherloc on the ARMv8-M architecture [6]
with necessary hardware features such as TrustZone as the TEE
and macro trace buffer (MTB) as the hardware tracing unit. It is
worth noting that the concept of Sherloc can be applied to any
embedded architecture with a hardware tracing unit and a secure
enclave to perform tracing record analysis. To assess the effective-
ness and performance of Sherloc, we conducted an evaluation on
a single-core Cortex-M33 microcontroller, employing the BEEBS
benchmark suite [39], bare-metal systems [9], and the FreeRTOS
profile with preemptive scheduling [22]. Our evaluation results
demonstrate that Sherloc can identify control-flow hijacking at-
tacks with satisfactory performance.

The contributions of this paper are summarized as follows:

• We identify and formalize the problem of system-oriented
control-flow violation detection, which enforces holistic control-
flow integrity for microcontroller-based multi-tasking sys-
tems, with or without privilege separation. The system-
oriented CFVD approach overcomes the limitations of exist-
ing application-oriented CFVD approaches by extending the
monitoring to privileged code;

• We present Sherloc, a secure and interrupt- and scheduling-
aware CFVD mechanism that protects itself from malicious
privileged program. Sherloc monitors both forward and
backward edges of both unprivileged and privileged pro-
grams, as well as synchronous and asynchronous control-
flow transfers among unprivileged and privileged compo-
nents. Additionally, we develop a model for estimating the
detection latency of Sherloc and determine its upper bound;

• We implement Sherloc for the ARMv8-M architecture and
evaluate its performance using embedded benchmark pro-
grams, bare-metal systems, and a real-time operating system.
Our evaluation results demonstrate that Sherloc is secure,
effective, and efficient. We open-source Sherloc.1

2 SYSTEM-ORIENTED CONTROL-FLOW

VIOLATION DETECTION

In this section, we formalize the definitions of the existing application-
oriented CFVDmechanism and the proposed system-oriented CFVD
mechanism. In addition, we discuss the motivations and challenges
of the proposed mechanism.

2.1 Application-oriented CFVD (ACFVD)

Current CFVDmechanisms for desktop systemswithmemory virtu-
alization only monitor a specific userland application. Wemodel the
interprocedural CFG of such an application A as 𝐺A = (𝑉A , 𝐸A),
where𝑉A is the set of basic blocks and 𝐸A is the set of control-flow
transfers defined by the application. Existing approaches configure
hardware tracing units, such as Intel Processor Trace [28], to record
only certain control-flow transfers, such as indirect calls/jumps and
returns, within a single applicationA and exclude synchronous and
asynchronous control-flow transfers of other applications or the
kernel. We model each trace record as a 2-tuple 𝑟 = ⟨𝑠, 𝑑⟩ where 𝑠
is the virtual source address and 𝑑 is the virtual destination address.

1https://github.com/CactiLab/Sherloc-Cortex-M-CFVD

Sherloc: Secure and Holistic Control-Flow Violation Detection on Embedded Systems CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Scheduler, e.g., PendSV ISR

Task B Task CTask A

Timer, e.g., SysTick ISR

Aa

Ab Ac

Ca
Cb

Cc

Ta Tn
Sa

Sn

Ba Bb

K
er

ne
l

Pr
iv

ile
ge

d
Ta

sk
s

Si
ng

le
 P

hy
si

ca
l A

dd
re

ss
 sp

ac
e a1

a6
a4

a2
a3

b1

b4
b2

b3

c1

c5

c2
c3

t1

a5 c4

t2s1

s2

c6

Return
Direct branch Direct call Indirect call

Exception/Interrupt Exception/Interrupt return

Shared Lib, e.g, taskYIELD()

La Ln l2

l3l1

U
np

riv
ile

ge
d

Ta
sk

s

a8 b5 c7a7

Figure 1: Example legitimate control-flow transfers of a sys-

tem with an RTOS kernel, two privileged tasks, and one un-

privileged task in a single physical address space.

The ACFVD solution verifies each indirect control-flow transfer
must match an edge in the 𝐺A :

Application-oriented CFVD. Given the trace 𝑅A =

(𝑟0, 𝑟1, . . . , 𝑟𝑛) of an application A, ACFVD verifies that
𝑟𝑖 ∈ 𝐸A , ∀𝑖 ∈ {0, 1, . . . , 𝑛}.

ACFVD approaches require the modification of the kernel to
capture and analyze traces, which makes it difficult to extend them
to monitor privileged code or the kernel itself. Furthermore, to
achieve better performance, many solutions perform incomplete
monitoring and mandate analyzing only the traces that lead to
specific system calls, such as execve, mmap, and mprotect.

2.2 System-oriented CFVD (SCFVD)

Due to the lack of memory virtualization, microcontroller-based
systems have all software components residing in the same physical
address space. In current practice, a software system for a micro-
controller, which includes an RTOS and applications (referred to
as tasks) running on top, is compiled and statically linked into
a single binary program. As a result, a bug anywhere may lead
to serious consequences. Furthermore, microcontroller-based sys-
tems are interrupt-driven, with the majority of processing taking
place in interrupt service routines (ISR). Therefore, it is critical
to provide a holistic and system-oriented CFVD solution that can
monitor control-flow transfers both within and among privileged
and unprivileged components.

However, an SCFVD solution faces many challenges as inter-
rupts and task scheduling occur asynchronously and cannot be
anticipated through static CFG analysis and/or dynamic CFG train-
ing [27, 34]. Figure 1 depicts a motivating example with an RTOS
kernel and three running tasks in a single physical address space.
Even if the interprocedural CFG can include an over-approximated
indirect control-flow transfer set (e.g., ⟨𝑐1, 𝑐2⟩, ⟨𝑐1, 𝑐3⟩ in Figure 1),
asynchronous interrupts can happen anytime (e.g., ⟨𝑐7, 𝑡1⟩). Addi-
tionally, unlike a function or interrupt return, where each return
goes to the most recent callsite or interrupted instruction, the sched-
uler may yield control to any running tasks. For instance, both
⟨𝑠2, 𝑏5⟩, i.e., scheduling task B, and ⟨𝑠2, 𝑐7⟩, i.e., scheduling task
C, are legitimate control-flow transfers in Figure 1. Therefore, an
interrupt- and scheduling-aware control-flow violation detection
mechanism is necessary to address these challenges.

We model such a microcontroller-based software system S in-
cluding a kernel K and tasks T as (𝐺S, 𝐼K , 𝑌T), where 𝐺S is its
interprocedural CFG, 𝐼K is the set of asynchronous kernel interrupt
service routine addresses (e.g., timer handler), and 𝑌T is the set of
task entry or re-entry addresses. In particular, 𝐺S is modeled as
(𝑉S, 𝐸S), where 𝑉S is the set of basic blocks of tasks and the ker-
nel, and 𝐸S is the set of control-flow transfers defined by the tasks
and the kernel. Please note that 𝐸S also models synchronous ex-
ceptions that involve control-flow transfers across privilege levels,
such as system calls. At system boot, 𝑌T = 𝑌TE

⋃
𝑌TR is initially

composed of statically retrieved entry addresses of all tasks 𝑌TE ,
which may be dynamically replaced by re-entry addresses 𝑌TR
when context switches occur. The SCFVD solution verifies each
indirect control-flow transfer must match an edge in the 𝐺S or the
destination of each asynchronous control-flow transfer must match
an address in the 𝐼K or 𝑌T :

System-oriented CFVD (SCFVD). Given the trace 𝑅S =

(𝑟0, 𝑟1, . . . , 𝑟𝑛) of a system S including a kernel K and tasks T ,
SCFVD verifies that 𝑟𝑖 ∈ 𝐸S

∨
𝑟𝑖 .𝑑 ∈ 𝐼K

⋃
𝑌T , ∀𝑖 ∈ {0, 1, . . . , 𝑛}.

Another challenge an SCFVD solution faces is how to securely
trace the protected system without allowing the privileged but
potentially compromised system to disable or disrupt the tracing.
Additionally, it is important to ensure the traces and the analysis
of the traces are secured from the protected system. To this end, an
SCFVD solution needs to prevent the privileged system from con-
figuring the hardware tracing unit, secure the trace in a protected
memory region, and perform the analysis in a higher privileged or
isolated mode, e.g., hypervisor or trusted execution environment.

3 BACKGROUND: ARMv8-M AND FreeRTOS

In this section, we discuss the ARMv8-M microcontroller architec-
ture and FreeRTOS on which we implemented and evaluated the
prototype of Sherloc on.

3.1 ARMv8-M Architecture

ARMv8-M is a 32-bit architecture that features 16 general-purpose
registers: R0 to R12, R13/SP (stack pointer), R14/LR (link register),
and R15/PC (program counter). The LR holds the return address for
a subroutine or a special value EXC_RETURN (0xFFFFFF**) when
an interrupt occurs. There are two execution modes in ARMv8-M:
thread and handler mode, with two privilege levels: privileged and
unprivileged. The handler mode is always privileged, while thread
mode can be either privileged or unprivileged. In thread mode,
privilege escalation is done through the SuperVisor Call (SVC) in-
struction. ARMv8-M uses a 32-bit physical address space, which
consists of several areas, including code (flash), SRAM, peripheral,
and system. The peripheral area contains memory-mapped periph-
eral control registers, while the system area contains system control
units, such as the memory protection unit and the SysTick timer.
ARMv8-M adopts automatic stacking and unstacking for interrupt
and exception handling. When a higher priority interrupt or ex-
ception occurs, the processor automatically saves general registers
to the current stack and stores the special value EXC_RETURN to LR.
The processor then executes the interrupt service routine, and upon
completion, automatically restores the saved context.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xi Tan and Ziming Zhao

3.2 ARMv8-M Hardware Tracing Unit

ARMv8-M architecture features a hardware tracing unit called Mi-
cro Trace Buffer (MTB). MTB captures all non-sequential program
counter changes on the microcontroller, including calls, branches,
and exceptions, and stores trace records, i.e., source and destination
address pair of the non-sequential PC change, at the trace buffer
within the SRAM area in a circular arrangement manner. The ad-
dress and size of trace buffer for each hardware system may be
different but fixed, and their values can be retrieved from the corre-
sponding registers, e.g., MTB_BASE. Table 1 presents the important
MTB registers and fields used by Sherloc.

Table 1: ARMv8-M MTB registers

Register Used fields Description
MTB_MASTER EN, HALTREQ Enable MTB
MTB_POSITION POINTER Write pointer offset
MTB_FLOW WATERMARK, AUTOHALT Stop conditions
MTB_BASE BASE Address of the trace buffer

Table 2 summarizes non-sequential control-flow transfer cases
in ARMv8-M. Each trace record, denoted as 𝑟 = ⟨𝑠, 𝑑⟩, is 8 bytes
and contains the source and destination addresses, where the least
significant bit (A-bit) of the source indicates whether the transfer
originated from an instruction or an exception. Most non-sequential
control-flow transfers generate one record, except for ISR returns
(e.g., BX LR when LR = EXC_RETURN), which generate two records.
In the first record, 𝑠 is the address of the return instruction, and 𝑑
is EXC_RETURN. In the second packet, 𝑠 is EXC_RETURN, and 𝑑 is the
control-flow transfer destination. When a predefined watermark is
reached, MTB can trigger a Debug Monitor (DebugMon) exception.

3.3 ARMv8-M Data Watchpoint and Trace Unit

ARMv8-M architecture provides a Data Watchpoint and Trace
unit (DWT), which comes with special registers called compara-
tors. These comparators are used for code/data address match-
ing and CPU cycle counting. The comparators can monitor read
and/or write operations to specified addresses and trigger a De-
bugMon exception when there is a match. Each comparator has a
DWT_COMP register that specifies the address being monitored and
a DWT_FUNCTION register that defines the operation to be moni-
tored, such as read and/or write. Since peripherals are also memory-
mapped on ARMv8-M, this mechanism can monitor any system
behavior, from memory reads and writes to executing code at any
address and modifying system registers.

3.4 ARMv8-M Trusted Execution Environment

In addition, ARMv8-M architecture features a trusted execution
environment called TrustZone. TrustZone adds an orthogonal parti-
tioning of states to execution modes and privilege levels, providing
an isolated execution environment for secure software. With Trust-
Zone, the processor has the secure and non-secure states, and the
division of secure and non-secure is memory map-based, where a
memory region can be secure, non-secure callable (NSC), or non-
secure, determined by the combination of secure attribution unit
(SAU) and vendor-specific implementation-defined attribution unit

(IDAU) configurations. SAU is configurable, whereas IDAU config-
urations are usually fixed. An NSC region serves as a springboard
from non-secure regions to secure regions using the Secure Gate-
way (SG) instruction. Different from ARMv8-A TrustZone that sets
the NS bit in the Secure Configuration Register (SCR) to indicate the
security state of the processor, the division of secure and non-secure
in ARMv8-M is based on the memory map, and state transitions
take place automatically.

3.5 FreeRTOS Overview

FreeRTOS is a real-time operating system (RTOS) capable of multi-
tasking and can run on the ARMv8-M architecture. It uses a priority-
based preemptive scheduler. The scheduler is implemented in the Sy-
sTick timer ISR, i.e., SysTick_Handler(), which checks whether
the current task has used up its scheduling quantum. If so, the
SysTick_Handler() sets the PENDSVSET bit of the Interrupt Con-
trol and State Register (ICSR), which triggers a Pending Supervisor
Call (PendSV) exception. The PendSV ISR, i.e., PendSV_Handler(),
then performs the context switch by identifying the runnable task
with the highest priority and resuming its execution. Unlike other
interrupts and exceptions that return to the interrupted task or
ISR, the PendSV exception returns to a different task. Additionally,
a privileged task can use the taskYIELD() function to request a
context switch to another task with higher or equal priority to the
current task, which also sets the PENDSVSET bit of the ICSR.

4 SHERLOC

As Figure 2 shows, Sherloc comprises offline analysis and runtime
configuration and enforcement modules. In this section, we first
describe the system and threat model. Then, we illustrate how each
module of Sherloc works.

4.1 System and Threat Model

We assume that the microcontroller has a hardware tracing unit
that is capable of generating non-sequential control-flow transfer
address pairs. We do not assume that the tracing unit has advanced
filtering capabilities, such as selective tracing of a particular task.
Such features are typically not available for microcontroller trac-
ing unit like MTB. Additionally, we assume the availability of a
trusted execution environment, such as TrustZone, which provides
secure isolation between the rich execution environment (REE; e.g.,
non-secure state in TrustZone) and the trusted execution environ-
ment (e.g., secure state in TrustZone) where the runtime modules of
Sherloc execute. We assume a secure boot process that ensures the
integrity of Sherloc’s code and data, e.g., indirect branch table, at
boot-time, preventing any tampering while Sherloc components
are at rest. We assume that TrustZone is secure and that Sherloc
is trusted at run-time. The protected system may be a bare-metal
system or an RTOS with multiple tasks. The RTOS may or may not
enable privilege separation. Both privileged and unprivileged mod-
ules in the rich execution environment may have bugs, and their
memory may be corrupted to perform control-flow hijacking at-
tacks. As with all other CFI solutions, we assume the code integrity
of the protected system so that direct calls and branches cannot
be tampered with. This can be ensured by configuring the code
segment of the protected system as read-only or non-writable, to

Sherloc: Secure and Holistic Control-Flow Violation Detection on Embedded Systems CCS ’23, November 26–30, 2023, Copenhagen, Denmark

The Protected System SHERLOC Runtime

DebugMon Handler

Static
Analysis

Binary of the
Protected
System

Indirect
Branch Table

Offline Analysis Runtime Detection

Data Flow

Dynamic
Training

Handling
Calls and
Branches

Task B

Non-secure Components (REE)

Secure Components (TEE)

SHERLOC’s SRAMProtected System’s SRAM Trace Buffer

Task A
Reset

Handler

Runtime
Config.

Privilege Isolation

MTB

Task C

K
er

ne
l

Ta
sk

s

SAU
Dynamic
Analysis

Task Entry List SchedulerTimer
Handler … Control-Flow Transfer Type Identification

Handling
Interrupts and

Exceptions

Handling
SchedulerCode Ranges of

Tasks and Kernel

Software Layer

Hardware Layer

Memory

DWT

Handling
Returns

Figure 2: Sherloc comprises offline analysis and runtime configuration and enforcement modules. The unmodified protected

system program runs in the non-secure state, whereas Sherloc runtime modules execute in the secure state.

Exec.

C
on

fig
. S

A
U

Protected system

MTB
Tracing

C
on

fig
. D

eb
ug

M
on

C
on

fig
. M

TB

Y
ie

ld
 c

on
tro

l

w
at

er
m

ar
k

hi
t

Su
sp

en
d

M
TB

R
es

um
e

M
TBSCFVD

Y
ie

ld
 c

on
tro

l

MTB
Tracing

Runtime Enfor.

Secure state
Non-secure state

Runtime Config.
SHERLOC

Exec.

w
at

er
m

ar
k

hi
t

Su
sp

en
d

M
TB

R
es

et

SCFVD

Runtime Enfor.

CFI
violation
detected

Re
se

t H
an

dl
er

D
eb

ug
M

on
 H

an
dl

er

D
eb

ug
M

on
 H

an
dl

er

Figure 3: Timeline showing the steps of Sherloc and pro-

tected system on a single core microcontroller. If a CFI viola-

tion is detected, Sherloc resets the system.

prevent modification of the code by an attacker. We do not consider
hardware attacks, such as glitching attacks.

4.2 Offline Analysis

To validate an indirect or asynchronous control-flow transfer, Sher-
loc requires an over-approximated CFG, a list of asynchronous ISR
addresses, and entry and re-entry addresses of all RTOS tasks. An
over-approximated CFG may result in higher false negative rate,
but it guarantees no false positives. The offline analysis module only
produces the set of legitimate indirect forward edges from the gen-
erated CFG and entry addresses of all RTOS tasks. Sherloc runtime
modules can retrieve asynchronous ISR addresses directly from the
non-secure state vector table (VT) on SRAM or flash by reading the
vector table offset register (VTOR_NS). The indirect backward edges,
i.e., returns, and the re-entry addresses of tasks are maintained
dynamically by the Sherloc runtime enforcement module.

To obtain an over-approximated CFG, we leverage existing bi-
nary analysis tools, such as angr [43], that disassemble and analyze
binaries. Such tools employ forced execution for adding basic blocks,
backward slicing to identify contexts, and symbolic back-traversal
to resolve indirect calls and branches. Prior research has demon-
strated that the outcomes are sufficiently precise in real-world sce-
narios [21, 47, 49, 54, 55, 58]. Additionally, we use dynamic training

SHERLOC

Code

Protected
System

Data

SHERLOC

Data
Trace
Buffer

0 4GB

Protected
System
Code

Non-secure memory Secure memory

Code (flash) SRAM

MTBPeripherals

Peripheral System

SAUDWT

Figure 4: An example memory layout of the entire system

in a closed environment with benign inputs to capture control-flow
transfers that might be missed by the aforementioned tools. After-
wards, the offline analysis module merges the CFG generated from
static/dynamic analysis and dynamic training, and reduces the CFG
to an indirect branch table (IBT) that contains the source and desti-
nation address pairs of all indirect calls and branches. IBT provides
higher precision compared to target set-based approaches [51], as
it maintains a destination address set for each source address.

As we do not assume advanced task filtering features of the hard-
ware tracing unit, identifying entry addresses of the running tasks
by examining the trace at run-time is difficult. To overcome this
challenge and facilitate runtime detection, the offline analysis mod-
ule uses RTOS heuristics to identify the entry addresses of tasks. For
instance, on FreeRTOS, the entry addresses have a TaskFunction_t
type, and tasks are created using the xTaskCreate() function or its
variants. These functions call the prvInitialiseNewTask() func-
tion and pass the task entry address as the first parameter. Based
on these heuristics, the offline analysis module uses binary analysis
techniques to identify the entry addresses of all tasks, which are
kept in a task entry list (𝑌TE).

In addition, the offline analysis module also identifies the code
range of various modules for run-time use, such as the start and
end addresses of each task’s code, shared libraries, and kernel code.

4.3 Configuration for Holistic Enforcement

When a TrustZone-enabled microcontroller boots, it starts in the
secure state, and the execution begins with the secure state reset
handler as shown in Figure 3. The Sherloc runtime configura-
tion module is implemented within this reset handler and has two
primary functions. First, the module configures SAU to partition

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xi Tan and Ziming Zhao

Table 2: The approach that Sherloc takes for handling each type of dereferenced instruction in the trace. It should be noted

that Sherloc disregards the small number of transfers that occur across states, as well as the transfers within the secure state.

⟨𝑠, 𝑑⟩: a standard trace record. (⟨𝑠1, 𝑑1⟩, ⟨𝑠2, 𝑑2⟩): a pair of interrupt or exception return trace records. IBT: Indirect branch table.

VT: non-secure state vector table. RCS: the current task- or kernel-specific reconstructed call stack. 𝑌T : task entry and re-entry

address list. Rx: any general purpose register.

Type Instruction(s) Ins. Size How to Identify the Type? Sherloc Actions

Ba
re
-m

et
al
Sy

st
em

an
d
RT

O
S
Ca

se
s

Direct branch (§4.4.1) B{cond} #imm 2/4 The dereferenced instruction Skip the record
Direct call (§4.4.1) BL{cond} #imm 4 The dereferenced instruction RCS.push(𝑠 + 4)

Indirect branch (§4.4.1)
BX{cond} Rx 2

The dereferenced instruction if ⟨𝑠,𝑑 ⟩ ∉ IBT, reset
TBB/TBH {PC, ...} 4

Indirect call (§4.4.1) BLX Rx 2 The dereferenced instruction if ⟨𝑠,𝑑 ⟩ ∉ IBT, reset; else RCS.push(𝑠 + 2)

Function return (§4.4.2)
BX LR

2/4 The dereferenced instruction if 𝑑 ≠ RCS.pop(), resetPOP {..., PC}

LDM SP!, {..., PC}

Sync. exception (§4.4.3) SVC #imm 2 𝑠 [A-bit] if 𝑑 ∉ VT, reset; else if 𝑑 ≠ PendSV, RCS.push(s)
Non-PendSV async.
interrupt (§4.4.3)

N/A N/A 𝑠[A-bit] if 𝑑 ∉ VT, reset; else if 𝑑 ≠ PendSV, RCS.push(s)

Non-PendSV ISR
return (§4.4.4)

BX LR

2/4
The dereferenced instruction and

(𝑑1 == EXC_RETURN ∧ 𝑠2 == EXC_RETURN)

if bare-metal and 𝑑2 ≠ RCS.top(), reset;
else if bare-metal and 𝑑2 == RCS.top(), RCS.pop();

else go to PendSV ISR return handling
POP {..., PC}

LDM SP!, {..., PC}

RT
O
S-
on

ly
Ca

se
s PendSV async.

interrupt (§4.4.5)
N/A N/A 𝑠[A-bit]

if 𝑑 == PendSV,
𝑌T .add(s) and 𝑌T .add(RCS.pop())

PendSV ISR
return (§4.4.6)

BX LR

POP {..., PC}

LDM SP!, {..., PC}

2/4
The dereferenced instruction and

(𝑑1 == EXC_RETURN ∧ 𝑠2 == EXC_RETURN)

if 𝑑2 ∉ 𝑌T , reset;
if 𝑑2 is in a shared library,

and assuming the next trace record is ⟨𝑠𝑛, 𝑑𝑛 ⟩,
and 𝑑𝑛 ∉ 𝑌T , reset

the secure and non-secure memory and ensure that the protected
system runs in the non-secure state while Sherloc runs in the se-
cure state. Figure 4 presents an example memory map of the entire
system. In addition to the code and data sections of the protected
system, the peripheral area is configured as non-secure to allow the
protected system’s direct access to peripherals. However, the sys-
tem area, in which SAU and MTB reside, is set as secure to prevent
a compromised non-secure system from reconfiguring the memory
layout or disabling the tracing. The trace buffer is also set as secure
to restrict access to only Sherloc.

Next, Sherloc sets a watermark for the trace buffer by config-
uring the MTB_FLOW register. To enable the watermark mechanism
and capture a watermark hit event with the DebugMon exception,
Sherloc also needs to set the debug monitor enable bit (MON_EN)
in the Debug Exception and Monitor Control Register (DEMCR). Set-
ting a higher watermark reduces the frequency of entering into
the Sherloc runtime enforcement module, thereby resulting in
higher run-time performance. On the other hand, setting a lower
watermark decreases the detection latency. With this configuration,
a DebugMon exception will be raised when the watermark is hit,
and the microcontroller enters the secure state to execute the De-
bugMon ISR. The Sherloc runtime enforcement module, which
we will discuss in the next subsection, is implemented in the De-
bugMon ISR. Even if the DebugMon ISR can immediately suspend
tracing, several non-sequential control-flow transfer records gener-
ated by housekeeping instructions will be saved in the trace buffer.

For instance, the state switch from non-secure to secure state will
include several non-sequential control-flow transfers. To prevent
these records from overwriting the protected system’s trace, the wa-
termark value should be smaller than the trace buffer size. We have
empirically determined that a 32-byte slack (i.e., 4 non-sequential
transfers) is safe for this purpose.

Afterwards, Sherloc sets the EN bit in MTB_MASTER register to
enable tracing and yields the control to the protected system in the
non-secure state by calling its reset handler.

4.4 Holistic Runtime Enforcement

Once the trace buffer reaches the watermark, MTB automatically
sets the HALTREQ bit of the MTB_MASTER register, which causes a De-
bugMon exception. Subsequently, the microcontroller executes the
secure state DebugMon ISR, in which Sherloc suspends the MTB
tracing by clearing the EN bit in MTB_MASTER. Then, Sherloc exam-
ines each record in the trace to detect any control-flow violations.
To determine whether a transfer originated from an interrupt or
an exception, Sherloc first checks the A-bit of the source address
(as discussed in §3.2). It then dereferences the instruction in the
non-secure state and processes accordingly based on the type. Ta-
ble 2 summarizes how Sherloc handles each type of dereferenced
instruction. It should be noted that the trace will include a small
number of records from the transfers that occur across states (e.g.,
interrupting non-secure execution and entering DebugMon ISR),

Sherloc: Secure and Holistic Control-Flow Violation Detection on Embedded Systems CCS ’23, November 26–30, 2023, Copenhagen, Denmark

as well as the transfers within the secure state (e.g., in DebugMon
ISR). Sherloc ignores such records as they are the results of secure
transfers and thus require no further action.

4.4.1 Handling Calls and Branches. As direct branches are consid-
ered secure, Sherloc skips them. For indirect branches and calls,
Sherloc verifies whether the source and destination address pair
is in the IBT. If the pair is not in the IBT, a CFI violation is detected.
Additionally, for direct and indirect calls, Sherloc reconstructs
call stacks, namely reconstructed call stacks (RCS), from the trace,
which are used for the violation detection of function returns. For
bare-metal systems, one RCS is enough, whereas RCSs are task-
and kernel-specific for RTOSs. An RCS comprises return addresses,
which are the source address plus 4 for direct calls and source ad-
dress plus 2 for indirect calls. To identify which task a trace record
belongs to, Sherloc compares the source address with the module
address ranges identified in offline analysis (§4.2) and pushes return
addresses onto the corresponding RCS.

4.4.2 Handling Function Returns. By maintaining an RCS for bare-
metal systems and RCSs for RTOSs-based systems, Sherloc pro-
vides the same level of precision as shadow stacks for backward
edges [20, 29, 38, 57]. For example, consider task C in Figure 1, where
either 𝑐2 or 𝑐3 is a legitimate destination of the indirect callsite 𝑐1.
Without RCS, the consecutive record sequence (⟨𝑐1, 𝑐3⟩, ⟨𝑐4, 𝑐5⟩)
would be considered legitimate. However, RCS increases the preci-
sion to only allow either the record sequence of (⟨𝑐1, 𝑐2⟩, ⟨𝑐4, 𝑐5⟩)
or (⟨𝑐1, 𝑐3⟩, ⟨𝑐6, 𝑐5⟩).

4.4.3 Handling Non-PendSV Interrupts and Exceptions. Both bare-
metal systems and RTOSs use non-PendSV interrupts and excep-
tions, and they can occur at any time. Sherloc handles non-PendSV
interrupts and exceptions differently from the PendSV interrupts
(which will be discussed in §4.4.5). If a trace record originates from
a non-PendSV interrupt or exception (i.e., the A-bit in the source
address is set), Sherloc first compares the destination address 𝑑 in
the record with the addresses in the non-secure state vector table.
If no match is found, a CFI violation is detected. If a match is found,
Sherloc considers that the interrupt or exception is legitimate. To
ensure the return to the interrupted code address from an interrupt
or exception, Sherloc pushes the interrupted code address 𝑠 onto
the current task’s RCS. If the interrupt or exception occurs before
any task is scheduled, the interrupted address is pushed onto the
kernel RCS.

4.4.4 Handling Non-PendSV Interrupt and Exception Returns. Han-
dling non-PendSV interrupt and exception returns is similar to
handling regular function returns, with the difference that MTB
generates two trace records (⟨𝑠1, 𝑑1⟩, ⟨𝑠2, 𝑑2⟩) for interrupt returns.
Sherloc verifies whether the destination address of the first record
𝑑1 and the source address of the second record 𝑠2 both equal to
EXC_RETURN. It then peeks the top of the current RCS and checks
whether the destination address of the second record 𝑑2 matches
the top of the current RCS. If there is a match, it indicates a legit-
imate non-PendSV return, and Sherloc pops the top value from
the current RCS. Otherwise, for a bare-metal system where there is
only one RCS, it means a CFI violation is detected. For an RTOS,
Sherloc further verifies whether the record is a legitimate PendSV
interrupt return, as will be described in §4.4.6.

4.4.5 Handling PendSV Interrupts. As discussed in §3.5, while bare-
metal systems do not use PendSV interrupts, RTOSs adopt PendSV
ISR to perform context switches, which can be triggered by either
preemptive scheduling (i.e., a SysTick event) or a task yielding
control (i.e., a task calling the taskYIELD() function in the shared
FreeRTOS library). Therefore, a PendSV interrupt could occur at any
code address of a task or a shared library. If the interrupted address
is in a shared library, when PendSV ISR returns, it is critical to
determine which task- or kernel-specific RCS to use for validation.
To facilitate the identification of the appropriate RCS, in addition
to the interrupted code address 𝑠 , Sherloc adds the current RCS’s
top item to the entry and re-entry list 𝑌T .

4.4.6 Handling PendSV and Scheduler Returns. For a PendSV inter-
rupt return record, Sherloc checks whether 𝑑2 is in the list of entry
and re-entry task addresses 𝑌T . If not, a CFI violation is detected.
If 𝑑2 is in 𝑌T , Sherloc checks whether 𝑑2 belongs to a task or the
kernel code, by comparing it to their address ranges and determines
which RCS to use next. However, if 𝑑2 is in the range of a shared
library, Sherloc needs to figure out which task or kernel called
that library. As discussed in §4.4.5, the triggering of PendSV inter-
rupts in FreeRTOS can occur either inside a SysTick handler or the
taskYIELD() function in the shared FreeRTOS library. In the Sy-
sTick case, when a PendSV ISR returns, it returns to the interrupted
code address in the task directly, and Sherloc can easily identify
the corresponding RCS to use next. In the task yielding control case,
the PendSV ISR returns to the taskYIELD() function first, which in
turn returns to the interrupted address in a task immediately with
a regular function return. Since taskYIELD() returns immediately,
and it does not introduce any extra non-sequential control-flow
transfers except the function return. However, for the trace record
⟨𝑠𝑛, 𝑑𝑛⟩ that originated from the taskYIELD() returns, Sherloc
does not know which task RCS it should check against. Therefore,
it checks whether the return address 𝑑𝑛 is in𝑌T , which should have
been added there when a legitimate PendSV interrupt record was
handled before, as discussed in §4.4.5.

4.4.7 Resume Tracing. If no violation is found after analyzing all
of the trace records, Sherloc resumes MTB tracing by setting the
EN bit and clearing the HALTREQ bit in the MTB_MASTER register and
resetting the POINTER field in the MTB_POSITION register to 0.

4.5 Event-triggered Runtime Enforcement

Besides holistic runtime enforcement, Sherloc also supports event-
triggered runtime enforcement, providing a trade-off between se-
curity and performance. Similar to the existing implementations
of application-oriented CFVD [23, 34, 47, 51, 53], the enforcement
can be triggered by some sensitive events, such as calling a certain
kernel API (similar to system calls on desktop) and modifying a
particular system register (e.g., changing memory permissions). To
this end, Sherloc utilizes DWT and does not rely on the MTB
watermark mechanism. Sherloc configures the DWT_COMP registers
to monitor code or data addresses and the DWT_FUNCTION register
to trigger a DebugMon exception upon operations at the monitored
addresses. Sherloc enables the DWT comparators by setting the
TRCENA bit of the DEMCR register. When a monitored event occurs,
DWT automatically sets the MATCHED field in the DWT_FUNCTION

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xi Tan and Ziming Zhao

Trace Buffer

…

⟨b4, l1⟩

⟨a3, a4⟩

⟨l2, s1⟩

RCS for Task ARuntime Enforcement

⟨l2, s1⟩

Direct transfer Function return

⟨s2, EXC_RETURN⟩

⟨l3, a8⟩

⟨EXC_RETURN, b5⟩

…

⟨a5, a6⟩
⟨a1, a2⟩
⟨a3, a4⟩

RCS for Task B

s1 is PendSV ISR address: Y𝓣.add(l2) and Y𝓣.add(a7 + 4)
Direct call: RCS.push(a7 + 4)

PendSV ISR return: b5 is in Y𝓣

Direct call: RCS.push(a1 + 4)

Direct call: RCS.push(b4 + 4)
s1 is PendSV ISR address: Y𝓣.add(l2) and Y𝓣.add(b4 + 4)

Direct branch: skip

…

PendSV ISR return: l2 is in Y𝓣

…

Function return: a8 is in Y𝓣 (a8 == a7 + 4)
Function return: a6 == RCS.pop()

Direct branch: skip

[a1 + 4], a7 + 4

[a1 + 4, a7 + 4]

[a1 + 4]

[a1 + 4]

[a1 + 4]
[a1 + 4]

[a1 + 4]

[a1 + 4]

[a1 + 4]

[] [...]

[a1 + 4]

[...]
[...]
[...]
[...]
[...]

[...]

[..., b4 + 4]
[...], b4 + 4

[...]

[...]
[...]

[...]

[], a1 + 4

[a1 + 4]

⟨a1, a2⟩

⟨a7, l1⟩

Y𝓣

{b5, …}
{b5, …}
{b5, …}
{b5, …}
{b5, l2, a7 + 4, …}
{b5, l2, a7 + 4, …}

{l2, a7 + 4, …}, b5

{l2, a7 + 4, …}
{l2, b4 + 4, l2, a7 + 4, …}

{b4 + 4, l2, a7 + 4, …}, l2

{b4 + 4, l2, …}, a7 + 4
{b4 + 4, l2, …}

{b4 + 4, l2, …}

⟨s2, EXC_RETURN⟩
⟨EXC_RETURN, l2⟩

Direct call: RCS.push(a1 + 4) [a1 + 4] [...] {b4 + 4, l2, …}

ISR entry ISR return

Figure 5: A running example showing how Sherloc verifies the trace from FreeRTOSwith two tasks. Both tasks call taskYIELD()
in the shared library. At the beginning of this trace, task B has been suspended and task A is about to execute. [] represents

RCS with the top on the right-hand side. Black [] represents the active RCS, and gray [] represents an inactive RCS.

Trace Buffer

…
⟨t2, t3⟩

⟨a6, a9⟩

⟨a1, a4⟩

⟨a11, a7⟩
⟨a8, a2⟩

RCSRuntime Enforcement

⟨a5, t1⟩

Direct transfer Function Return ISR entry

⟨tn, EXC_RETURN⟩

⟨a3, t1⟩
…

⟨EXC_RETURN, a5⟩

…

…
Direct branch: skip

Indirect call: RCS.push(a6 + 2)

Direct call: RCS.push(a1 + 4)

Return: a7 == RCS.pop()
Return: a2 == RCS.pop()

t1 is in VT: RCS.push(a5)

ISR return: a5 == RCS.pop()

t1 is in VT: RCS.push(a3)
…

…

[..., a1 + 4, a5, …]
[..., a1 + 4, a5]

[..., a1 + 4, a6 + 2]

[..., a1 + 4]

[..., a1 + 4], a6 + 2

[...], a1 + 4

[..., a1 + 4, a5]

[..., a1 + 4], a5

[..., a3]
[..., a3, …]

[...]
Indirect call ISR return

Figure 6: A running example showing how Sherloc verifies

the trace from a bare-metal system. [] represents RCS with

the top on the right-hand side.

register and triggers the DebugMon exception. Upon entering the
DebugMon ISR, Sherloc suspends the MTB tracing, clears the
MATCHED field of DWT_FUNCTION, and examines the trace records.

Since the MTB overwrites the trace buffer in a circular manner,
in the event-triggered mechanism, Sherloc only has access to the
most recent records, not the full trace. The number of available
records depends on the size of the trace buffer, so this mechanism
cannot provide the same level of precision as the holistic mech-
anism. Specifically, the event-triggered mechanism only handles
indirect function calls and returns, not interrupts and exceptions.
The IBT for this mechanism includes all possible indirect control-
flow transfers, including function returns.

4.6 Running Examples for Holistic Runtime

Enforcement

4.6.1 A Bare-metal System Example. Figure 6 illustrates how Sher-
loc handles different trace records for a bare-metal system. Since
the bare-metal system only adopts one call stack, Sherloc also
only maintains one RCS. After identifying the instruction that a
record originated from, Sherloc performs a corresponding action,
including updating the RCS accordingly. The example trace starts
with a direct call at 𝑎1, so the address of the next instruction 𝑎1 + 4
is pushed onto the RCS. Sherloc verifies that the instruction at 𝑎5
was legally interrupted and pushes the interrupted code address 𝑎5
onto the RCS. When seeing an interrupt return record, Sherloc
compares the destination 𝑎5 with the top item of the RCS. Indirect
calls are handled similarly, with the address of the next instruction
being pushed onto the RCS.

4.6.2 An FreeRTOS Example. Figure 5 illustrates how Sherloc
handles the trace from FreeRTOS with two running tasks. Both
tasks call taskYIELD() in the shared library to yield control. At the
beginning of this trace, task B has been suspended, so a re-entry
address 𝑏5 of task B is already in the task entry and re-entry list
𝑌T . As task A is about to execute, Sherloc uses task A’s RCS as the
active RCS. After executing for a while, task A calls taskYIELD()
at 𝑙1 to yield control. taskYIELD() triggers the PendSV interrupt,
which generates the record for the PendSV ISR. Sherloc adds both
the interrupted address 𝑙2 of taskYield() and the top item 𝑎7 + 4
of the active RCS to 𝑌T . Afterwards, the records show that task B
executes, so Sherloc switches the active RCS to task B’s RCS. Later,
task B yields control. When seeing a PendSV ISR return record,
Sherloc verifies whether 𝑙2 and the destination part of the next
record 𝑎8 are both in 𝑌T .

Sherloc: Secure and Holistic Control-Flow Violation Detection on Embedded Systems CCS ’23, November 26–30, 2023, Copenhagen, Denmark

5 IMPLEMENTATION AND EVALUATION

In this section, we first discuss the implementation of Sherloc for
the ARMv8-M architecture. Then, we evaluate the security and
effectiveness of Sherloc, including an analysis of its detection
latency. We present the performance evaluation results of Sherloc
on BEEBS benchmark suite, bare-metal systems, and FreeRTOS.
Finally, we compare Sherloc with prior approaches.

5.1 Implementation

We developed a prototype of Sherloc for the ARMv8-M architec-
ture. The offline analysis module is composed of 948 lines of Python
code, utilizing angr [43] and capstone [1] for binary disassembly
and CFG analysis. For the runtime modules, we added them to the
Reset and DebugMon handler of secure state code in the Keil IDE
TrustZone example project 2, which includes system initialization
code. The runtime configuration module includes 425 lines of C
code, with 34 lines for the event-trigger installation. The runtime
enforcement module is made up of 1,020 lines of C code. Sherloc
reserves 1 KB for each task’s RCS and 3 KB for the task entry and
re-entry list (𝑌T). We compiled the Sherloc runtime modules with
armclang [8] O3 optimization, and the generated secure state image
is 13.1 KB in .text, 4 KB in .data, and 16.45 KB in .bss sections.

5.2 Evaluation Environment

We evaluated Sherloc on the ARM Versatile Express Cortex-M
prototyping system (V2M-MPS2+) [10], which includes peripherals,
such as Ethernet, UART, LCD touch screen, LED, etc. We configured
this system as a Cortex-M33 microcontroller running at 20MHz
using the AN505 FPGA image [7]. The configured system has a 4
MB code/flash region and 4 MB SRAM, including 4 KB allocated to
the MTB trace buffer. In addition, it supports 8 configurable SAU
regions and 4 DWT comparators.

5.3 Security Analysis and Evaluation

5.3.1 Detection Latency Analysis. Like all other CFVDmechanisms,
Sherloc introduces detection latency, which can be measured by
the number of instructions the attacker executes between the first
hijacked control-flow transfer and its detection. Assuming that the
watermark is set at the 𝑁 -th byte, this is constrained by the size
of the trace buffer and the records originated from Sherloc itself,
which consumes a small and bounded bytes in the trace (e.g., 32
bytes). A pair of interrupt or exception return records consumes 16
bytes, and all other non-sequential control-flow transfer records
consume 8 bytes. Therefore, there will be at most 𝑁

8 records in
the trace buffer. Assuming that the control-flow hijacking attack
occurs at the 𝑖-th record (following a uniform distribution between
the first and 𝑁

8 -th record), then the delay is at most 𝑁
8 − 𝑖 non-

sequential transfers, considering that asynchronous interrupts will
also generate trace records. Therefore, the average delay is at most
𝑁
16 non-sequential transfers. If we denote the average number of
instructions before a non-sequential control-flow transfer instruc-
tion as 𝑆 , the expected average detection latency of Sherloc can
be approximated as 𝑁×𝑆

16 instructions.

2https://www.keil.com/dd2/arm/iotkit_cm33/

Figure 7: The expected detection latency with different wa-

termark settings and average number of instructions before

a non-sequential transfer. Most ARMv8-M systems only have

a trace buffer of 4KB or smaller.

We conducted an empirical measurement of 𝑆 in FreeRTOS and
bare-metal systems. The results show that for armclang O3 opti-
mization, FreeRTOS has an 𝑆 value of 5.29, and for Oz optimization,
it has an 𝑆 value of 4.57. On the other hand, for O3 optimization,
bare-metal systems have an 𝑆 value of 4.33, and for Oz optimization,
they have an 𝑆 value of 3.53. Figure 7 shows the expected detection
latency with different 𝑁 and 𝑆 .

To determine whether an attacker can successfully execute mean-
ingful attacks before Sherloc detects them, we consider a scenario
where the attacker attempts to exfiltrate sensitive data from the
system by conducting a ROP attack to read the data and reuse
functions for exfiltration, such as (i) using the C library function
printf() to output to stdout or using sendto() to send a UDP
packet, and (ii) toggling the GPIO-based LED as a covert channel
to output data. In our experiments, we make the assumption that
the attacker has already gained permissions to access peripherals
such as UART and GPIO. However, it is important to note that if
the attacker does not possess the required privileges, e.g., control-
flow hijacked an unprivileged task on FreeRTOS, they will need
to execute a significantly larger number of instructions to escalate
their privilege level first. This additional step of privilege escalation
further increases the chances for Sherloc to detect attacks.

Our experimental results show that it takes more than 2,300
instructions to reuse printf() to print out just one byte to the
UART interface. It is worth noting that while printf() has a sim-
ple implementation and the UART interface has an uncomplicated
driver, more complex exfiltration methods, such as sendto(), and
drivers, such as those used for WiFi, Ethernet or Bluetooth, will
require significantly more instructions to complete a similar task.
In the second experiment, we leverage a GPIO toggling operation to
alternate the LED status, thereby conveying one bit of information.
This operation requires 55 instructions (including checking current
GPIO status and reusing library function to turn on/off LED, but
excluding any delays that the attacker may need to introduce be-
tween toggles). Thus, leaking a byte of data necessitates at least
440 instructions. As illustrated in Figure 7, the results indicate that
the detection latency of Sherloc is not a significant issue.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xi Tan and Ziming Zhao

Table 3: The evaluated programs/systems, i.e., BEEBS programs, Blinky bare-metal system, and FreeRTOS, along with the

number of their indirect call (IC), indirect branch (IB), direct call (DC), direct branch (DB), return (RET) instructions, and

IBT entries (IBT). The two numbers in each entry of the table represent the number of instructions for O3/Oz optimization,

respectively. It is important to note that the number of instructions does not necessarily correspond to the number of times

those instructions are executed at run-time. For the BEEBS programs, we only measure the performance overhead of the

programs alone. For Blinky and FreeRTOS, we measure the overhead of the entire systems, including system initialization and

the handling of non-PendSV and PendSV interrupts and exceptions.

bu
bb
le
so
rt

cr
c3
2

di
jk
st
ra

ed
n

fa
st
a

fr
ac

le
ve
ns
ht
ei
n

nb
od

y

nd
es

ne
ttl
e_
ae
s

pi
co
jp
eg

qr
du

in
o

rij
nd

ae
l

ar
ra
yb

in
se
ar
ch

dl
lis
t

ha
sh
ta
bl
e

lis
ts
or
t

qu
eu
e

rb
tr
ee

st w
he
ts
to
ne

Bl
in
ky

Fr
ee
RT

O
S

IC 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/3 0/0 0/15 0/14 0/0 0/0 0/2 0/1 0/0 0/0 1/1 0/0 0/6 0/110 8/3
IB 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/1 0/0 0/0 5/5 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 1/2 1/2 5/5
DC 10/0 5/0 10/2 7/0 5/4 71/45 32/3 121/18 21/4 7/4 88/60 44/50 10/19 5/0 5/1 6/7 5/0 6/0 13/9 302/33 387/297 70/59 103/112
DB 33/12 7/7 49/24 20/29 32/9 113/110 52/26 93/94 17/32 30/25 532/206 456/235 90/60 23/12 82/3 154/28 55/29 45/20 99/90 121/35 226/236 2040/67 389/239
RET 3/0 1/0 2/1 3/0 1/2 68/66 6/5 40/36 2/1 2/2 17/19 17/25 7/10 1/0 1/1 3/3 2/0 1/0 7/7 69/44 107/105 19/25 30/41
IBT 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/1 0/3 0/0 8/24 9/22 0/0 0/0 0/8 0/4 0/0 0/0 2/2 1/1 1/7 4/121 11/8

However, the attacker can still successfully toggle a bit by uti-
lizing ROP directly into a library function. In this scenario, the
protected system will rapidly encounter a hardware fault due to
the imbalanced stack. The default handler for this hardware fault is
an infinite loop, causing it to fill up the MTB buffer and eventually
trigger Sherloc’s holistic enforcement. As a result, this attack will
eventually be detected but not prevented. To address this concern,
Sherloc’s event-triggered enforcement can effectively prevent such
attacks by setting the DWT to monitor the write behaviors of the
memory-mapped register.

5.3.2 Effectiveness Evaluation. To evaluate the effectiveness of
Sherloc, we conducted two control-flow hijacking attacks on
FreeRTOS and checked whether Sherloc could detect them. The
source code and detection traces for these attacks are available in
our anonymized code repository. In the first attack scenario, a task
running on FreeRTOS has a stack-based buffer overflow vulnerabil-
ity that can be exploited to hijack the backward-edge control-flow
transfer. In this case, Sherloc discovered that the return address
did not match the top item on the task’s RCS. In the second attack
scenario, we assumed and exploited an arbitrary write bug in the
FreeRTOS kernel that allowed attackers to modify any task’s re-
entry address in the saved contexts. Sherloc was able to detect
that the tampered re-entry address was not present in the 𝑌T set
and successfully stopped the attack.

5.4 Performance Evaluation

5.4.1 Experiment Setup. In the performance evaluation, all of the
protected programs/systems were compiled with armclang using
O3 and Oz compile-time and link-time optimizations. In general, the
binaries generated from O3 optimization run faster and have fewer
indirect branches/calls but larger binary sizes, while binaries from
Oz optimization run slower and have more indirect branches/calls
but reduced binary sizes. Table 3 presents all the evaluated pro-
grams/systems along with the number of their indirect call, indirect
branch, direct call, and return (i.e., the three instructions shown in
the row of function return in Table 2) instructions in the binaries.

To evaluate the holistic enforcement performance of Sherloc,
we configured the watermark at 4032 bytes and conducted experi-
ments on the following three sets of programs/systems.

We utilized the BEEBS benchmark (commit number 049ded9 [39]
to evaluate Sherloc’s performance in handling calls, branches, and
function returns. As discussed in Silhouette [57], some BEEBS pro-
grams are very small and would be excessively optimized during
compile-time. Therefore, we selected 22 programs with relatively
complex execution times. Each chosen BEEBS program was incor-
porated into the main function of the non-secure state code in the
Keil IDE TrustZone example project. We solely measured the CPU
cycles spent by these applications with or without Sherloc enabled,
excluding the CPU cycles of the system initialization.

We employed the Blinky bare-metal system [9] that displays
animations on the LCD touchscreen and toggles a LED at a pre-
determined time interval, such as 10 ms or 100 ms. As the Blinky
application includes the drivers for those peripherals, it has the
largest binary size among all the evaluated programs/systems, with
126,592 bytes for O3 and 49,324 bytes for Oz. The Blinky applica-
tion sets up the SysTick timer and handles the SysTick interrupt
periodically. This experiment examines Sherloc’s performance
to handle non-PendSV interrupts, exceptions, and returns across
various timer interrupt frequencies. We measured the CPU cycles
from non-secure state system boots to Blinky finishing 10 toggles.

We used a FreeRTOS setup with memory protection unit (MPU)
enabled (v202112) to evaluate Sherloc’s performance for handling
PendSV interrupts and scheduler returns. This FreeRTOS setup only
implements the ISRs for reset, hardware fault, SVC, SysTick timer,
and PendSV interrupts and exceptions, and it excludes drivers for
most peripherals. In these experiments, FreeRTOS runs two tasks:
one is an unprivileged crc32 task from the BEEBS benchmark, and
the other is a privileged idle loop task. The generated FreeRTOS
binary is 74,452 bytes for O3 optimization and 65,596 bytes for Oz
optimization. We measured the CPU cycles from non-secure state
system boots to the crc32 task finishing five executions.

To evaluate the event-triggered enforcement performance of
Sherloc, we carried out experiments with two different triggers

Sherloc: Secure and Holistic Control-Flow Violation Detection on Embedded Systems CCS ’23, November 26–30, 2023, Copenhagen, Denmark

0%

100%

200%

300%

400%

500%

bubb
lesor

t
crc3

2
dijks

tra edn fasta frac
leven

shtei
n

nbod
y ndes

nettl
e_ae

s
pico

jpeg qrdu
ino

rijnd
ael

array
binse

arch dllis
t
hash

table

listin
serts

ort listso
rt

queu
e st

whet
stone

0.
55

0.
12

0.
96

0.
26

0.
49

0.
92

0.
82

0.
65

0.
3

0.
12

0.
52

0.
93

0.
07

0.
91

1.
15

0.
72

0.
6

1.
23

0.
5

0.
69

0.
72

0.
11

0.
02

0.
19

0.
05

0.
09

0.
18

0.
16

0.
13

0.
06

0.
02

0.
1

0.
18

0.
01

0.
18

0.
22

0.
14

0.
12

0.
24

0.
1

0.
13

0.
14

95
.1
5

27
.8
3

18
2.
02

47
.9
2 85
.8
5

22
5.
16

15
2.
14

15
9.
19

63
.0
9

24
.5
3

97
.9
1

16
2.
28

16
.1
1

15
8.
63 20
6.
78

13
3.
75

10
4.
81

22
2.
02

87
.8
9

16
6.
48

17
2.
17

0.
33

0.
07

0.
58

0.
16

0.
3

1.
52

0.
5

1.
11

0.
18

0.
07

0.
31

0.
56

0.
04

0.
55

0.
7

0.
46

0.
36

0.
75

0.
3

1.
54

1.
1329

.9
1

6.
69

52
.4
6

14
.0
3

26
.7 57
.2
7

45
.5
9

40
.0
1

17
.4
3

6.
59 31
.2
9

50
.5
9

4.
24

49
.7 63
.0
2

39
.6
1

32
.8
5 67
.3
3

27
.4
1

40
.7
9

44
.1

12
5.
39

34
.5
9

23
5.
06

62
.1
1 11
2.
85

28
3.
95

19
8.
23

20
0.
31

80
.7

31
.1
9

12
9.
51

21
3.
43

20
.3
9

20
8.
88

27
0.
8

17
3.
82

13
7.
02

29
0.
09

11
5.
6

20
8.
81

21
7.
4

Enter and exit Read trace buffer Transfer type identification Forward-edge Backward-edge The entire validation

(a) Performance overhead (%) of BEEBS programs compiled with O3 optimization.

0%

100%

200%

300%

400%

500%

bubb
lesor

t
crc3

2
dijks

tra edn fasta frac
leven

shtei
n

nbod
y ndes

nettl
e_ae

s
pico

jpeg qrdu
ino

rijnd
ael

array
binse

arch dllis
t
hash

table

listin
serts

ort listso
rt

queu
e st

whet
stone

0.
95

1.
33

1.
34

1.
42

1.
05

0.
93

1.
34

0.
78

1.
18

0.
27

1.
02

1.
43

0.
63

0.
96

1.
79

1.
98

1.
81

1.
85

1.
16

0.
71

0.
74

0.
18

0.
25

0.
26

0.
27

0.
2

0.
18

0.
26

0.
15

0.
23

0.
05

0.
2

0.
28

0.
12

0.
18

0.
35

0.
38

0.
35

0.
36

0.
22

0.
14

0.
14

16
3.
63

22
9.
3

24
2.
77

24
6

17
9.
58 22
5.
8

23
7.
63

18
2.
11

26
8.
1

49
.5
9

19
8.
85

28
3.
85

12
4.
19 16
4.
54

32
9.
03

42
7.
69

33
8.
98

32
5.
2

20
0.
89

16
9.
31

17
4.
93

0.
57

0.
8

0.
81

0.
86

0.
63

1.
5

0.
81

1.
16

93
.6
7

0.
22

0.
9 3.
16

0.
79

0.
57

1.
09

1.
18

1.
1

1.
12

0.
7

1.
48

2.
26

51
.4
6

72
.1
1

75
.0
7

77
.3
5

56
.4
6

57
.8 73
.9
9

46
.8
6

11
2.
83

14
.9
1 59
.6
1

79
.9

34
.9
3

51
.7
5 10
0.
02

12
0.
09

10
2.
53

10
1.
09

63
.1
4

41
.7
8

45
.2
9

21
5.
67

30
2.
21

31
8.
65

32
4.
21

23
7.
67 28
4.
1 31
2.
44

23
0.
13

47
4.
6

64
.7
2

25
9.
36

36
6.
91

15
9.
91

21
6.
87

43
0.
14

54
8.
96

44
2.
61

42
7.
41

26
4.
73

21
2.
58

22
2.
48

(b) Performance overhead (%) of BEEBS programs compiled with Oz optimization.

Figure 8: Performance overhead (%) of BEEBS programs introduced by Sherloc’s holistic enforcement on a single-core Cortex-

M33 microcontroller system.

0%

200%

400%

600%

800%

1,000%

1,200%

Blinky 10ms (O
3)

Blinky 10ms (O
z)

Blinky 100ms (O
3)

Blinky 100ms (O
z)

FreeRTOS (O3)

FreeRTOS (Oz)

MPU trig
gered (O3)

MPU trig
gered (Oz)

LED trig
gered (O3)

LED trig
gered (Oz)

0.
17

2.
38

0.
19

0.
55

5.
84

3.
61

3.
31

0.
53

0 00.
06

0.
09

0.
01

0.
02

0.
94

0.
89 34

.8
9

31
.8

4

0.
1

0.
0755

.2
3

11
6.

68

7.
35 18
.8

3

84
8.

79

80
3.

59

37
.8

3

39
.2

6

0.
03

0.
02

0.
39 10
.0

9

0.
48 15
.0

9

5.
96

1.
83

12
2.

95

51
1.

41

15
8.

3

38
0.

3

11
65

.5
5

11
01

.7
4

46
.1

7

47
.9

7

0.
03

0.
02

IBT query

Event-triggeredHolistic

Figure 9: Performance overhead (%) of Blinky (10 ms and

100 ms toggling intervals) and FreeRTOS introduced by

Sherloc’s holistic enforcement and MPU/LED-based event-

triggered enforcement on a single-core Cortex-M33 micro-

controller system. As for the forward-edge CFVD, we evalu-

ated the performance introduced by the IBT query for Blinky

and FreeRTOS.

on FreeRTOS: (i) FreeRTOS employs the ARMv8-M memory pro-
tection unit (MPU) to configure memory permissions of tasks and
the kernel. Therefore, every context switch involves saving and
restoring task and kernel-specific MPU settings. In the first experi-
ment, Sherloc is triggered by a write to any of the MPU registers;
(ii) in the second experiment, we simulated less frequent scenarios

where an attacker may attempt to access a sensitive peripheral,
such as a LED. Thus, Sherloc is only triggered by a write to the
LED peripheral registers.

5.4.2 Results. We evaluated the number of CPU cycles that Sher-
loc spends on (i) entering and exiting the secure state, (ii) read-
ing through the trace buffer, (iii) transfer type identification, (iii)
forward-edge CFVD or IBT query, (iv) backward-edge CFVD for
BEEBS, and (v) the entire validation process, including (iii) to (iv).
Figure 8 and Figure 9 illustrate the performance overhead compared
to the unmonitored programs/systems.

As the results demonstrate, entering and exiting Sherloc intro-
duces negligible overhead due to the fast state switch mechanism of
ARMv8-M. Sherloc on BEEBS programs with O3 optimization only
introduces 0.07% - 1.23% performance overhead for this step, while
Sherloc on BEEBS programs under Oz has a slightly higher over-
head of 0.27% - 1.98%. Even for cases with a large number of task
context switches, such as FreeRTOS O3 and Oz in Figure 9, entering
and exiting Sherloc only add 5.84% and 3.61% overhead, respec-
tively. However, a higher entering and exiting overhead means
that there are more trace records and the watermark has been hit
more often. For instance, although bubblesort Oz has fewer non-
sequential control-flow transfer instructions than bubblesort O3
as shown in Table 3, there are more run-time executions of those
instructions (e.g., more loops). Hence, the entering and exiting
overhead of bubblesort O3 is higher than that of bubblesort Oz.

Similarly to the overhead of entering and exiting, the overhead
of reading through the trace buffer is highly dependent on the trace

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xi Tan and Ziming Zhao

size. In general, reading through the trace buffer is very fast. For
BEEBS programs with O3 optimization, Sherloc only introduces
0.01% - 0.24% performance overhead for this step, while for BEEBS
programs with Oz optimization, there is a slightly higher overhead
of 0.05% - 0.38%. Even in the worst-case scenario, FreeRTOS O3 and
Oz only introduce 0.94% and 0.89% overhead, respectively.

Most of the Sherloc overhead can be attributed to the validation
stage, for which we will discuss optimization approaches in §7.
The validation stage includes identifying the instruction type that
originated a trace record, dispatching a record for handling based
on the instruction type (e.g., query the IBT to validate address pairs
if it is an indirect branch) and maintaining the RCS and task entry
and re-entry list. We noted that the process of identifying the type
of transfers constitutes over 75% of the overall time expended in
the validation stage. For BEEBS programs with O3 optimization,
Sherloc only introduces 20.39% - 290.09% performance overhead
for the entire validation step, while for BEEBS programs with Oz
optimization, there is a higher overhead of 64.72% - 548.96%. The
validation overhead of Sherloc on the Blinky program with 10 ms
toggling interval is 122.95% and 511.41% for O3 and Oz, respectively.
The overhead of Blinky program with 100 ms toggling interval is
158.3% and 380.3% for O3 and Oz, respectively. For FreeRTOS with
frequent context switches, the validation overhead is 1165.55% and
1101.74% for O3 and Oz, respectively. These results indicate that
the number of interrupts and exceptions in complicated systems
can have a significant impact on the performance of Sherloc.

Diving deeper into the validation stage, for BEEBS (no inter-
rupts) we interpret the IBT query as the forward-edge, while the
updates and checks on the RCS form the bulk of the backward-edge.
For Blinky and FreeRTOS, however, the forward-edges include IBT
query, interrupt and exception handling, and task schedule han-
dling. As O3 optimization generates faster code, it tends to use fewer
indirect calls but more direct branches. As shown in Table 3, the
O3 version of picojpeg, qrduino, and Blinky do not use any indirect
calls, but the Oz version of them have 15, 14, and 110 indirect calls,
respectively. On the other hand, the number of direct branches re-
duces significantly, with Blinky reducing from 2,040 direct branches
to 67. More indirect transfers mean a larger IBT and hence higher
run-time overhead of searching in the IBT. In general, we see Oz
has a higher performance overhead than its O3 counterparts. The
geometric means of forward-edge validation overheads for BEEBS
under O3 and Oz are 0.38% and 1.11%, respectively. Meanwhile, the
backward-edge validation overheads for the same benchmarks are
higher, with geometric means of 29.61% and 64.81% for O3 and Oz,
respectively. The IBT query overhead of Blinky program with 10
ms toggling interval is 0.39% and 10.09% for O3 and Oz, respectively.
However, the IBT size is not the sole factor influencing run-time
overhead. Despite ndes having fewer IBT entries than picojpeg, it
performs indirect transfers more frequently, leading to a higher
overhead. Additionally, for FreeRTOS which has a smaller IBT size
than Blinky, the overhead incurred due to the IBT query is 5.96%
and 1.83% for O3 and Oz, respectively.

As expected, we observed that Sherloc’s event-triggered en-
forcement results in much higher performance than the holistic

enforcement approach. As aforementioned, current CFVD solu-
tions that only monitor desktop applications all adopt this event-
triggered approach. As shown in Figure 9, the event-triggered en-
forcement on FreeRTOS with frequent MPU updates only intro-
duced a 46.17% overhead for O3 and a 47.97% for Oz, compared
to the 1165.55% overhead for the holistic approach with O3 and
1101.74% with Oz. With even less frequent triggers, such as the
LED-based trigger, Sherloc only introduces a 0.03% overhead for
O3 and 0.02% for Oz.

5.5 Comparison with Prior Approaches

Table 4 provides a comprehensive comparison of Sherloc with
prior approaches. The table evaluates various aspects, including
targeted CPU architecture, protection targets, required hardware
features, security guarantees (such as the ability to monitor priv-
ileged code and the entire system), backward- and forward-edge
policies and precision, CFVD triggers, and self-reported run-time
average or geometric mean performance overheads for each ap-
proach. Note that evaluation results are not solely dependent on the
approach itself but also on the experimental setup, which can vary
significantly from one project to another. For example, some ap-
proaches claim to work for RTOSs, but they were only evaluated on
bare-metal systems. As a result, directly comparing the numerical
values across different approaches may be misleading.

5.5.1 Comparison with Inlined Instrumentation Approaches for Em-
bedded Systems. Prior works, such as RECFISH [48], 𝜇RAI [5],
CaRE [38], TzmCFI [29], Silhouette [57], and Kage [20] have at-
tempted to enforce control-flow integrity for embedded systems
through inlined instrumentation. All of them, except CaRE, change
the memory layout of the protection target. Neither RECFISH nor
CaRE requires source code, while the others rely on source code.

RECFISH only protects unprivileged tasks on FreeRTOS and
makes shadow stacks only accessible at the privileged level. 𝜇RAI
achieves superior performance, i.e., 0.1%, and eliminates the need to
spill return addresses to memory by using jump instructions, a re-
served general-purpose register, and statically computed return ad-
dress lookup tables to determine the correct return location at run-
time. However, when calling a function from an uninstrumented
library, 𝜇RAI needs to switch privilege levels and saves/loads re-
served registers to/from a safe region, which is expensive.

Silhouette and Kage adopt a shadow stack combined with coarse-
grained label-based CFI protections for bare-metal systems and
RTOSs, respectively. To protect the shadow stack, they utilize un-
privileged load or store instructions, necessitating instrumentation
and instruction transformation. While both Silhouette and Kage
exhibit superior performance than Sherloc, they have certain limi-
tations. Notably, they do not provide protection for startup code
or libraries, unlike Sherloc, which can safeguard the entire bare-
metal system or RTOS. Moreover, Silhouette and Kage utilize a
parallel shadow stack, leading to significant memory overhead and
supporting only a limited number of tasks.

Both CaRE and TzmCFI use TrustZone and keep shadow stacks
inside the secure state. CaRE targets bare-metal systems, while Tzm-
CFI works on RTOSs. CaRE intercepts all function calls and return
instructions to trap them into the secure state, while TzmCFI uses
the updated exception trampoline to push the current and parent

Sherloc: Secure and Holistic Control-Flow Violation Detection on Embedded Systems CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 4: Comparison with prior approaches

Ta
rg
et
ed

CP
U

Pr
ot
ec
tio

n
ta
rg
et
s

Re
qu

ire
d
ha
rd
w
ar
e
fe
at
ur
es

D
oe
sn

ot
re
qu

ire
so
ur
ce

co
de
?

D
oe
sn

ot
re
qu

ire
in
st
ru
m
en
ta
tio

n?
Ca

n
m
on

ito
rp

riv
ile
ge
d
co
de
?

Ca
n
m
on

ito
rt
he

en
tir
e
sy
st
em

?

Ba
ck
w
ar
d-
ed
ge

po
lic
y
an
d
pr
ec
is
io
n

Fo
rw

ar
d-
ed
ge

po
lic
y
an
d
pr
ec
is
io
n

CF
VD

tr
ig
ge
rs

Ru
n-
tim

e
ov
er
he
ad

on
Ba

re
-m

et
al
or

Be
nc
hm

ar
k
(%
)

Ru
n-
tim

e
ov
er
he
ad

on
Fr
ee
RT

O
S
(%
)

Ev
en
t-
tr
ig
ge
re
d
ov
er
he
ad

(%
)

II

RECFISH [48] R Unprivileged task MPU ✓ ✗ ✗ ✗ shadow stack coarse-grained - 21 - -
𝜇RAI [5] M Bare-metal ✗ ✗ ✓ ✗ return address integrity coarse-grained - 0.1 - -
Silhouette [57] M Bare-metal ULSI/MPU ✗ ✗ ✓ ✗ shadow stack coarse-grained - 3.4 - -
Kage [20] M RTOS ULSI/MPU ✗ ✗ ✓ ✗ shadow stack coarse-grained - - 5.2 -
CaRE [38] M Bare-metal TZ ✓ ✗ ✓ ✓ shadow stack fine-grained - 513 - -
TzmCFI [29] M RTOS TZ ✗ ✗ ✓ ✓ shadow stack ✗ - 84 - -

CF
VD

CFIMon [51] I Windows app BTS ✓ ✓ ✗ ✗ call-proceded targets coarse-grained critical syscalls - - 6.1
PathArmor [47] I Linux app LBR ✓ ✗ ✗ ✗ call/return matching fine-grained critical syscalls - - 8.5
CFIGuard [53] I Linux app LBR/PMU ✗ ✓ ✗ ✗ whitelist targets fine-grained PMU interrupts - - 2.9
FlowGuard [34] I Linux app PT ✓ ✓ ✗ ✗ whitelist targets fine-grained critical syscalls - - 3.8
GRIFFIN [23] I Linux app PT ✓ ✓ ✗ ✗ shadow stack fine-grained critical syscalls/watermark - - 11.9
PT-CFI [27] I Linux app PT ✓ ✓ ✗ ✗ shadow stack ✗ critical syscalls - - 21
Sherloc M RTOS/Bare-metal TZ/MTB ✓ ✓ ✓ ✓ RCS fine-grained critical operations/watermark 123.2 1106.2 0.09

II: inlined instrumentation; R: Cortex-R; M: Cortex-M; I: Intel; ULSI: unprivileged load or store instructions; TZ: TrustZone; LBR: last branch recording;
PMU: performance monitor unit; BTS: branch trace store; PT: intel processor trace; coarse-grained: check only if the destination of an indirect control
transfer is legitimate [27]; fine-grained: constrain the indirect transfer into a source-destination pair [27]; - : precision in descending order; ✓: support;
✗: not support; −: not applicable. Note that evaluation results are not solely dependent on the approach itself but also on the experimental setup, which
can vary significantly from one project to another and directly comparing the numerical values across different approaches may be misleading.

exception stack frame into the secure state shadow stack. In compar-
ison, Sherloc outperforms CaRE in protecting bare-metal systems.
While TzmCFI demonstrates better performance than Sherloc in
benchmarks, it lacks explicit protection for forward edges, relying
instead on the built-in LLVM CFI implementation [46]. TzmCFI did
not report the performance overhead of protecting an entire RTOS.

5.5.2 Comparison with CFVD Approaches for Desktop Systems.
None of the existing CFVD approaches for desktop systems, includ-
ing CFIGuard [53], PathArmor [47], CFIMon [51], FlowGuard [34],
GRIFFIN [23], and PT-CFI [27], are capable of monitoring privi-
leged code. This underscores one of the key strengths of Sherloc,
which extends CFVD to cover privileged code and adeptly handles
asynchronous interrupts.

Furthermore, most existing CFVD approaches enforce less pre-
cise backward- and forward-edge policies. For instance, CFIMon
uses Intel’s branch trace store (BTS) to collect branch information
and checks if the executed path is in the pre-collected control trans-
fer sets. PathArmor uses Intel’s last branch record (LBR) for tracing,
hooks sensitive system calls, and triggers the inspection when those

system calls are invoked. It uses call/return matching to verify re-
turns. CFIGuard utilizes the performance monitoring unit (PMU) to
trigger verification. It uses a fine-grained CFG to get a strict target
table and validates the indirect branches from LBR at run-time.
However, LBR is vulnerable to history-flushing attacks [41, 42].
FlowGuard, GRIFFIN, and PT-CFI utilizes Intel’s processor trace
(PT), which records indirect calls/jumps and returns. FlowGuard
first constructs an indirect branch Graph by running the target
application and marks the covered execution paths with more vital
credits and labels the non-covered edges with fewer credits. At
run-time, FlowGuard compares the trace records with these credit
edges. GRIFFIN and PT-CFI utilize shadow stack, which provides
the same level of precision as Sherloc’s RCS mechanism. While
GRIFFIN enforces fine-grained policy on forward edges, PT-CFI
does not protect forward edges. Note that all of the aforementioned
systems provide evaluation results on multicore processors.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Xi Tan and Ziming Zhao

6 RELATEDWORK

6.1 Other Control-Flow Protections on

Embedded Systems

Besides the inlined instrumentation approaches discussed in §5.5.1,
other projects offer various levels of control-flow protections for em-
bedded systems. Ret2ns [35] reports the fast state switchmechanism
of Cortex-M TrustZone can be exploited for cross-state control-flow
hijacking. To address this vulnerability, ret2ns proposes software-
fault isolation (SFI) based mechanisms to govern cross-state control
flows. uSFI [11], ACES [16], and MINION [31] compartmentalizes
embedded software functions and peripherals into separate do-
mains for better isolation. These approaches enforce control-flow
validations across compartments, offering limited control-flow pro-
tections. However, they come with additional compartment context
switch overhead. An alternate approach is to use memory-safe
languages, such as Rust, to program embedded systems, as demon-
strated in Tock [32]. However, microcontroller-based embedded
systems often require direct low-level hardware access, such as
through memory-mapped registers. For tasks like these, the use of
unsafe blocks in Rust is necessary, which can potentially introduce
vulnerabilities to control-flow hijacking.

6.2 Other Trace-based Security Approaches

Besides the CFVD approaches discussed in §5.5.2, other trace-based
mechanisms were proposed for heuristic-based CFVD and various
other purposes. For instance, kBouncer [40] and ROPecker [15] are
security mechanisms developed to combat ROP attacks. kBouncer
operates by comparing the executed gadget chain in LBR against
heuristic ROP attack patterns. ROPecker discerns valid gadget
chains via records in the LBR obtained through emulating the exe-
cution of a legitimate program. Bunkerbuster [52] employs PT and
introduces a method for bug hunting that relies on symbolically re-
constructing states based on execution traces. 𝜇AFL [33] leverages
the Embedded Trace Macrocell (ETM) and fuzzing techniques to
discover vulnerabilities in embedded systems.

7 LIMITATIONS AND FUTURE

OPTIMIZATION

7.1 Limitations

The holistic enforcement approach of Sherloc may not be applica-
ble to time-sensitive tasks. Specifically, the non-secure interrupts
can be blocked and deferred for later handling if they occur during
the execution of trace validation. One potential solution to over-
come this limitation is to set the priority of the secure DebugMon
to the lowest level, ensuring that non-secure interrupts take prece-
dence and are served immediately. However, implementing this
approach would involve incorporating tracing enabling instruc-
tions within non-secure ISRs, which goes against our objective of
achieving non-instrumentation in this paper.

Another limitation of Sherloc is that it relies on task entry
addresses generated through heuristics during offline analysis. To
determine the heuristics used in generating such addresses, manual
analysis of a specific RTOS is required since different RTOSs employ
distinct strategies for task management and scheduling. Future
work should aim to automate this process.

7.2 Future Optimization

The performance of Sherloc’s holistic enforcement can be signifi-
cantly improved with the following approaches: (i) On multicore
microcontrollers, such as the NXP LPC55S6x which has dual Cortex-
M33 cores and TrustZone support [37], Sherloc could execute con-
currently with the protected system, eliminating the need to pause
it during analysis. In fact, current application-oriented CFVD solu-
tions [23, 27, 34, 47, 51, 53] have reported better performance than
Sherloc mainly because they are evaluated on multicore CPUs
where the analysis does not block the monitored application’s ex-
ecution; (ii) In our prototype implementation, Sherloc directly
dereferences the original instruction from flash in the non-secure
state.While this results in a simpler implementation, accessing from
flash is much slower than accessing from SRAM. An optimization
approach would be to encode the type of every instruction, such as
its opcode, during offline analysis and load such information into
the SRAM for faster run-time access.

8 CONCLUSION

Microcontroller-based embedded systems are interrupt-driven, with
the majority of processing taking place in the privileged mode, and
they are vulnerable to control-flow hijacking attacks. However,
current CFVD mechanisms are limited to monitoring unprivileged
applications, making it essential to provide a system-oriented CFVD
solution that monitors control-flow transfers between privileged
and unprivileged components. In this paper, we formalized the
problem and designed Sherloc, a secure and holistic CFVD sys-
tem for the ARMv8-M architecture. Sherlocmonitors forward and
backward edges of unprivileged and privileged programs, as well
as control-flow transfers among unprivileged and privileged com-
ponents. To ensure security, Sherloc utilizes the trusted execution
environment, preventing privileged programs from bypassing mon-
itoring or tampering with the trace. In addition, Sherloc supports
event-triggered analysis as current CFVD approaches. Our experi-
ments demonstrated the effectiveness of Sherloc, and performance
evaluations showed its efficiency.

ACKNOWLEDGMENT

Many thanks to our shepherd and anonymous reviewers for their
thoughtful reviews. This material is based upon work supported
in part by National Science Foundation (NSF) grants (2237238 and
2037798) and a National Centers of Academic Excellence in Cyber-
security grant (H98230-22-1-0307).

REFERENCES

[1] 2014. Capstone disassembly/disassembler framework. https://www.capstone-
engine.org/. (2014).

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-
flow integrity principles, implementations, and applications. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[3] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. A theory of
secure control flow. In International Conference on Formal Engineering Methods
and Software Engineering (ICFEM).

[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC).

[5] Naif Saleh Almakhdhub, Abraham A Clements, Saurabh Bagchi, and Mathias
Payer. 2020. 𝜇RAI: Securing Embedded Systems with Return Address Integrity.
In Network and Distributed Systems Security (NDSS) Symposium.

https://www.capstone-engine.org/
https://www.capstone-engine.org/

Sherloc: Secure and Holistic Control-Flow Violation Detection on Embedded Systems CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[6] Arm. 2015. Armv8-M Architecture Reference Manual. https://developer.arm.co
m/documentation/ddi0553/bm/. (2015).

[7] Arm. 2017. AN505: Cortex™-M33with IoT kit FPGA forMPS2+ Version 2.0. (2017).
https://developer.arm.com/tools-and-software/development-boards/fpga-
prototyping-boards/download-fpga-images.

[8] Arm. 2017. Arm Compiler armclang Reference Guide. (2017). https://developer.
arm.com/documentation/100067/0609/.

[9] Arm. 2017. ARM IOT-Kit CM33 Secure/Non-Secure Blinky project. (2017).
https://www.keil.com/dd2/arm/iotkit_cm33/.

[10] Arm. 2017. Arm MPS2+ FPGA prototyping board. (2017). https://developer.arm.
com/tools-and-software/development-boards/fpga-prototyping-boards/mps2.

[11] Zelalem Birhanu Aweke and Todd Austin. 2018. uSFI: Ultra-lightweight software
fault isolation for IoT-class devices. In IEEE Design, Automation & Test in Europe
Conference & Exhibition (DATE).

[12] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.
2014. Hacking blind. In IEEE Symposium on Security and Privacy.

[13] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-flow integrity: Precision, security,
and performance. ACM Computing Surveys (CSUR).

[14] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining light on
shadow stacks. In IEEE Symposium on Security and Privacy (SP).

[15] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert H Deng. 2014.
ROPecker: A generic and practical approach for defending against ROP attack.
In Network and Distributed Systems Security Symposium (NDSS).

[16] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias
Payer. 2018. ACES: Automatic Compartments for Embedded Systems. In USENIX
Security Symposium.

[17] Thurston HY Dang, Petros Maniatis, and David Wagner. 2015. The performance
cost of shadow stacks and stack canaries. In ACM Symposium on Information,
Computer and Communications Security (AsiaCCS).

[18] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
2010. Return-oriented programming without returns on ARM. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[19] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the gadgets: On the ineffectiveness of coarse-grained control-flow
integrity protection. In USENIX Security Symposium.

[20] Yufei Du, Zhuojia Shen, Komail Dharsee, Jie Zhou, Robert J Walls, and John
Criswell. 2022. Holistic Control-Flow Protection on Real-Time Embedded Systems
with Kage. In USENIX Security Symposium.

[21] Tommaso Frassetto, Patrick Jauernig, David Koisser, and Ahmad-Reza Sadeghi.
2022. CfInsight: A comprehensive metric for CFI policies. In Network and Dis-
tributed System Security Symposium (NDSS).

[22] FreeRTOS. 2023. FreeRTOS. https://www.freertos.org/. (2023).
[23] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin: Guarding control

flows using intel processor trace. ACM SIGPLAN Notices.
[24] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-

grained control-flow integrity for kernel software. In IEEE European Symposium
on Security and Privacy (EuroS&P).

[25] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of control: Overcoming control-flow integrity. In IEEE Symposium on Security
and Privacy.

[26] Jens Grossklags and Claudia Eckert. 2018. 𝜏cfi: Type-assisted control flow in-
tegrity for x86-64 binaries. In Research in Attacks, Intrusions, and Defenses (RAID).

[27] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017. PT-CFI: Trans-
parent backward-edge CFVD using intel processor trace. In ACM on Conference
on Data and Application Security and Privacy (CODASPY).

[28] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3C: System Programming Guide, Part 3. https://www.intel.com/content/da
m/www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-vol-3c-part-3-manual.pdf. (2016).

[29] Tomoaki Kawada, Shinya Honda, Yutaka Matsubara, and Hiroaki Takada. 2020.
TZmCFI: RTOS-Aware Control-Flow Integrity Using TrustZone for Armv8-M.
International Journal of Parallel Programming.

[30] Mustakimur Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie Yang. 2019.
Origin-sensitive Control Flow Integrity. In USENIX Security Symposium.

[31] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Byoungyoung Lee,
Xiangyu Zhang, and Dongyan Xu. 2018. Securing Real-Time Microcontroller Sys-
tems through Customized Memory View Switching. In Network and Distributed
System Security Symposium (NDSS).

[32] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kb computer safely
and efficiently. InACM SIGOPS symposium onOperating systems principles (SOSP).

[33] Wenqiang Li, Jiameng Shi, Fengjun Li, Jingqiang Lin, Wei Wang, and Le
Guan. 2022. 𝜇AFL: Non-intrusive Feedback-driven Fuzzing for Microcontroller
Firmware. In International Conference on Software Engineering (ICSE).

[34] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haibing Guan.
2017. Transparent and efficient cfi enforcement with intel processor trace. In IEEE
International Symposium on High performance computer architecture (HPCA).

[35] Zheyuan Ma, Xi Tan, Lukasz Ziarek, Ning Zhang, Hongxin Hu, and Ziming
Zhao. 2023. Return-to-Non-Secure Vulnerabilities on ARM Cortex-M TrustZone:
Attack and Defense. In ACM/IEEE Design Automation Conference (DAC).

[36] Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens Grossklags,
and Claudia Eckert. 2019. Analyzing control flow integrity with LLVM-CFI. In
Annual Computer Security Applications Conference (ACSAC).

[37] NXP. 2023. LPC55S6x. https://www.nxp.com/products/processors-and-
microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-arm-
cortex-m33/high-efficiency-arm-cortex-m33-based-microcontroller-family:
LPC55S6x. (2023). Accessed: 05-01-2023.

[38] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N Asokan. 2017. CFI CaRE:
Hardware-supported call and return enforcement for commercial microcon-
trollers. In International Symposium on Research in Attacks, Intrusions, and De-
fenses (RAID).

[39] James Pallister, SimonHollis, and Jeremy Bennett. 2013. BEEBS: open benchmarks
for energymeasurements on embedded platforms. arXiv preprint arXiv:1308.5174.

[40] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2013. Trans-
parent ROP exploit mitigation using indirect branch tracing. In USENIX Security.

[41] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steeg-
manns, Moritz Contag, and Thorsten Holz. 2014. Evaluating the effectiveness of
current anti-ROP defenses. In International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID).

[42] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2011. Q: Exploit
hardening made easy. In USENIX Security Symposium.

[43] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[44] Philip Sparks. 2021. The route to a trillion devices. https://community.arm.com/
iot/b/blog/posts/whitepaper-the-route-to-a-trillion-devices. (2021).

[45] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal war
in memory. In IEEE Symposium on Security and Privacy.

[46] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing forward-edge control-
flow integrity in GCC and LLVM. In USENIX Security Symposium.

[47] Victor Van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical context-
sensitive CFI. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[48] Robert J Walls, Nicholas F Brown, Thomas Le Baron, Craig A Shue, Hamed
Okhravi, and Bryan CWard. 2019. Control-flow integrity for real-time embedded
systems. In Euromicro Conference on Real-Time Systems (ECRTS).

[49] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John
Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. 2017. Ram-
blr: Making Reassembly Great Again. In Network and Distributed Systems Security
(NDSS) Symposium.

[50] Nathanael R Weidler, Dane Brown, Samuel A Mitchel, Joel Anderson, Jonathan R
Williams, Austin Costley, Chase Kunz, Christopher Wilkinson, RemyWehbe, and
Ryan Gerdes. 2017. Return-oriented programming on a cortex-m processor. In
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom).

[51] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. 2012. CFIMon: Detecting
violation of control flow integrity using performance counters. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).

[52] Carter Yagemann, Simon P Chung, Brendan Saltaformaggio, and Wenke Lee.
2021. Automated bug hunting with data-driven symbolic root cause analysis. In
ACM SIGSAC Conference on Computer and Communications Security.

[53] Pinghai Yuan, Qingkai Zeng, and Xuhua Ding. 2015. Hardware-assisted fine-
grained code-reuse attack detection. In International Symposium on Recent Ad-
vances in Intrusion Detection (RAID).

[54] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical control flow integrity and
randomization for binary executables. In IEEE Symposium on Security and Privacy.

[55] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R Sekar. 2014. A platform
for secure static binary instrumentation. In ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments.

[56] Mingwei Zhang and R Sekar. 2013. Control flow and code integrity for COTS
binaries: An effective defense against real-world ROP attacks. In USENIX Security
Symposium.

[57] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John Criswell, and Robert J Walls.
2020. Silhouette: Efficient protected shadow stacks for embedded systems. In
USENIX Security Symposium.

[58] Lipeng Zhu, Xiaotong Fu, Yao Yao, Yuqing Zhang, and He Wang. 2019. FIoT:
Detecting the memory corruption in lightweight IoT device firmware. In IEEE
International Conference On Trust, Security And Privacy (TrustCom).

https://developer.arm.com/documentation/ddi0553/bm/
https://developer.arm.com/documentation/ddi0553/bm/
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/download-fpga-images
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/download-fpga-images
https://developer.arm.com/documentation/100067/0609/
https://developer.arm.com/documentation/100067/0609/
https://www.keil.com/dd2/arm/iotkit_cm33/
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/mps2
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/mps2
https://www.freertos.org/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-arm-cortex-m33/high-efficiency-arm-cortex-m33-based-microcontroller-family:LPC55S6x
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-arm-cortex-m33/high-efficiency-arm-cortex-m33-based-microcontroller-family:LPC55S6x
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-arm-cortex-m33/high-efficiency-arm-cortex-m33-based-microcontroller-family:LPC55S6x
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-arm-cortex-m33/high-efficiency-arm-cortex-m33-based-microcontroller-family:LPC55S6x
https://community.arm.com/iot/b/blog/posts/whitepaper-the-route-to-a-trillion-devices
https://community.arm.com/iot/b/blog/posts/whitepaper-the-route-to-a-trillion-devices

	Abstract
	1 Introduction
	2 System-Oriented Control-Flow Violation Detection
	2.1 Application-oriented CFVD (ACFVD)
	2.2 System-oriented CFVD (SCFVD)

	3 Background: ARMv8-M and FreeRTOS
	3.1 ARMv8-M Architecture
	3.2 ARMv8-M Hardware Tracing Unit
	3.3 ARMv8-M Data Watchpoint and Trace Unit
	3.4 ARMv8-M Trusted Execution Environment
	3.5 FreeRTOS Overview

	4 Sherloc
	4.1 System and Threat Model
	4.2 Offline Analysis
	4.3 Configuration for Holistic Enforcement
	4.4 Holistic Runtime Enforcement
	4.5 Event-triggered Runtime Enforcement
	4.6 Running Examples for Holistic Runtime Enforcement

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation Environment
	5.3 Security Analysis and Evaluation
	5.4 Performance Evaluation
	5.5 Comparison with Prior Approaches

	6 Related Work
	6.1 Other Control-Flow Protections on Embedded Systems
	6.2 Other Trace-based Security Approaches

	7 Limitations and Future Optimization
	7.1 Limitations
	7.2 Future Optimization

	8 Conclusion
	References

