
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

FIDO Gets Verified: A Formal Analysis of the
Universal Authentication Framework Protocol

Haonan Feng∗, Jingjing Guan∗, Hui Li, Xuesong Pan, and Ziming Zhao, Member, IEEE

Abstract—The FIDO protocol suite aims at allowing users to log in to remote services with a local and trusted authenticator. With
FIDO, relying services do not need to store user-chosen secrets or their hashes, which eliminates a major attack surface for
e-business. Given its increasing popularity, it is imperative to formally analyze whether the security promises of FIDO hold. In this
paper, we present a comprehensive and formal verification of the FIDO UAF protocol by formalizing its security assumptions and goals
and modeling the protocol under different scenarios in ProVerif. Our analysis identifies the minimal security assumptions required for
each of the security goals of FIDO UAF to hold. We confirm previously manually discovered vulnerabilities in an automated way and
disclose several new attacks. Guided by the formal verification results, we also discovered two practical attacks on two popular Android
FIDO apps, which we responsibly disclosed to the vendors. In addition, we offer several concrete recommendations to fix the identified
problems and weaknesses in the protocol.

Index Terms—FIDO UAF, formal methods, authentication protocol

F

1 INTRODUCTION

Fast IDentity Online (FIDO) has gained significant popular-
ity in recent years as a public-key cryptography-based au-
thentication framework that enables users to log in to remote
online services and websites by authenticating themselves
to local trusted authenticators, such as a fingerprint scanner
on a smartphone. With FIDO, relying web services do not
need to store user-chosen secrets or their hashes, which
eliminates a major attack surface for e-business [12], [13],
[56]. At the time of writing, more than 250 companies have
become members of the FIDO alliance [25], and more than
703 certified FIDO products are in the market [35]. Android
7.0+ is now also FIDO2 certified out of the box, and Mi-
crosoft Windows has been supporting the FIDO2 standard
since October 2018, which gives billions of users the ability
to leverage built-in authenticators for passwordless access
to websites and applications [22].

The original FIDO protocol suite consists of two sets of
specifications: Universal Authentication Framework (UAF)
and Universal Second Factor (U2F). UAF allows users to
register their accounts with the relying party through a
trusted authenticator and replaces the traditional password
login scheme. U2F allows users to add a second-factor
local authenticator to enhance the security of their accounts.
FIDO2 was officially launched in 2018 with the addition
of Web Authentication specification (WebAuthn) [53] and
Client-to-Authenticator Protocol (CTAP) [23]. WebAuthn
supports online services to use FIDO through a standard-

A preliminary version of this manuscript titled “A Formal Analysis of the
FIDO UAF Protocol” was published in the Proceedings of Network and
Distributed System Security Symposium (NDSS) 2021.
H. Feng, J. Guan, H. Li, and X. Pan are with the School of Cyberspace
Security, Beijing University of Posts and Telecommunications, China. E-mail:
{fenghaonan, guaner, lihuill, panxuesong}@bupt.edu.cn.
Z. Zhao is with the Department of Computer Science and Engineering,
University at Buffalo, USA. E-mail: zimingzh@buffalo.edu.
*Haonan Feng and Jingjing Guan contributed equally to this manuscript.
The corresponding author is Hui Li.

ized web API, whereas CTAP supports external devices to
work with browsers supporting WebAuthn.

Given the increasing popularity of FIDO, it is imperative
to analyze if its security promises hold. Some flaws of FIDO
have already been identified using manual analysis [15],
[37], [43], [44], [48]. Even though these ad hoc methods
can help discover some vulnerabilities, they lack a formal
foundation and are not capable of systematically verifying
the properties of FIDO.

Also, there have been several attempts to formally verify
FIDO [39], [49]. However, they have many limitations: i)
none of them presented a formalization of the security
assumptions and goals from the FIDO specifications, which
led to an inaccurate, if not incorrect, modeling of the pro-
tocol and security properties; ii) they focused on the U2F
protocol, which has a simpler attack model than the UAF
protocol does. This is because multiple vulnerable entities in
the UAF are consolidated into one trusted physical device
in the U2F; iii) their oversimplified modeling of the protocol
failed in discovering more vulnerabilities.

In fact, formally and comprehensively verifying the se-
curity properties of the UAF protocol is challenging and
time-consuming: i) many security assumptions and security
goals are implicit and buried in over 500 pages of English
specifications across 19 documents. The formal extraction
of them requires considerable analysis and interpretation
of the specifications; ii) the attack model is complicated
because many entities in the protocol can be compromised
in real-world settings. A comprehensive verification should
consider all possible scenarios; iii) the UAF protocol is
complex with many steps and optional steps, which should
also be considered in verification.

We tackle the aforementioned challenges and resort
to formal methods, which have been used in verifying
the security of real-world protocols, such as Needham-
Schroeder [45], TLS [6]–[8], 5G authentication [4], IKE [16],
Diffie-Hellman [1], [50], ISO/IEC 9798-2 [58], LMAP [38],

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

vTPM migration [14], 3PAKE [55], e-voting [18], E-
Health [19], USB Type-C [51], etc. The contributions of this
paper are summarized as follows:

1) We provide a formalization of UAF’s security assump-
tions and goals by extracting and formally interpreting them
from the specifications. We consider all sorts of properties,
including authentication, non-repudiation, confidentiality,
and privacy (§3);

2) We provide a faithful, detailed, and formal model of the
UAF protocol, which is the most comprehensive representa-
tion of UAF in literature (§4);

3) We carry out an automatic verification in the symbolic
model using ProVerif [9], [10]. We open-source our verifica-
tion code UAFVerif+ and AutoMinAs1, which are front-end
tools to ProVerif. UAFVerif+ supports the analysis of a large
number of UAF use cases (§4), and AutoMinAs is a generic
tool for identifying minimal assumptions;

4) We present the verification results and minimal assump-
tions for UAF to meet each security property (§5);

5) We present theoretical attacks against each security prop-
erty in the form of adversarial capability combinations (§6.1);

6) Guided by the theoretical attacks, we present five
practical attacks and case studies. We successfully con-
ducted two of these attacks on two popular Android apps.
We responsibly disclosed vulnerabilities to the vendors, and
a medium-risk vulnerability ID was assigned (§6.2);

7) We offer several concrete and explicit suggestions to fix
the identified problems (§7).

This paper is an extended version of our previous
work [21] published in the Network and Distributed System
Security Symposium (NDSS) 2021. The main differences
between these two versions are listed below: i) we refine
our formal model to cover more use cases defined in the
specifications. We clarify the operations of the web server
(WS) and the UAF server (US) inside the Relying Party (RP)
and the messages between them, and consider the scenarios
that the UAF Server does not provide AppID in the request;
ii) we present a new method of identifying the minimal
assumptions with the correlation assertions in π-calculus,
and develop UAFVerif+. Our experimental results show that
UAFVerif+ is more efficient than UAFVerif [21]. We also
develop AutoMinAs, which can automatically obtain the
minimal assumptions for a given protocol taking the proto-
col process, security assumptions, and security properties as
inputs; iii) we present all theoretical attacks corresponding
to each security goal, which are presented in the form of
atomic adversarial capability combinations. We also discuss
our newly discovered attacks in the refined model.

2 OVERVIEW OF THE UAF PROTOCOL

The UAF protocol has two major operations, namely au-
thenticator registration and authentication. At a high level,
the UAF protocol works as follows: a user wishes to log in to
remote services using a device that has a certified UAF au-
thenticator, e.g., a fingerprint sensor. The authenticator has a
trusted attestation key (either RSA or ECDSA). The user logs
in to a relying party, such as a banking website, using her
original credentials, e.g., text-based passwords. The authen-
ticator records her fingerprint, generates an authentication

1. https://github.com/CactiLab/UAFVerif

key for this website, signs the public part of the new key with
the attestation key, and sends it to the website. The website
links the user’s online profile with the authentication key if
it is valid. As a result, the trust between the relying party
and the authenticator is established, and the procedure of
authenticator registration is completed. In subsequent login
attempts (the authentication procedure), the user only needs
to prove her identity to the local authenticator, upon the
success of which the website and the authenticator will run
a challenge-response protocol with the authentication key.

Table 1 describes the acronyms used in this paper. Sec-
tion 2.1 presents the overall architecture and entities of
UAF. Some of the steps and exchanged messages of the
protocol differ based on the type of authenticators in use. In
Section 2.2 and Section 2.3, we illustrate the protocol using
1st-factor bound authenticators [27]. Section 2.4 explains the
protocol operations under different types of authenticators.

2.1 Architecture

Authenticator ASM UAF Client Web ServerUser Agent

User Device Relying Party

TLS

UAF Server

b
b
b

b
b
b

Fig. 1. UAF architecture

As shown in Figure 1, we abstract six major entities and
five communication channels in the Universal Authentica-
tion Framework. On the user side:

1) an authenticator, which has an internal matcher for
user verifications, stores a model identifier, an attestation
key, and a symmetric key 〈AAID, skAT , kW 〉. The authen-
ticator generates asymmetric authentication keys (skAU ,
pkAU) [28]. There are 4 types of authenticators, 1st-factor
bound authenticator (1B), 2nd-factor bound authenticator
(2B), 1st-factor roaming authenticator (1R), and 2nd-factor
roaming authenticator (2R). They differ in generating and
using h, KeyID, and ak, which we explain in Section 2.4;

2) the Authenticator Specific Module (ASM) is an abstrac-
tion layer that provides a uniform API. When ASM is
launched for the first time, it generates a secret (tok) [29];

3) a UAF Client (UC) is a system service or application
that implements the client-side logic of the UAF protocol. A
UAF Client is identified by a CallerID, which ASM retrieves
from the operating system. For example, on Android, Cal-
lerID is the hash of the UAF Client’s APK signing certificate;

4) a User Agent (UA) is a user application identified by
a URI named FacetID. When the user agent is a browser,
FacetID is the web origin of the web page triggering the UAF
operation, e.g., https://login.example.com/. When
the user agent is an app on Android, FacetID is the hash
of the user agent’s APK signing certificate;

The Relying Party (RP) consists of a web server and a
UAF server: 5) a Web Server (WS) interacts with the User
Agent and processes login requests from the user with
the original login method. Web Server also provides the
required information to UAF Server and forwards the UAF
protocol messages; 6) a UAF Server (US) handles the UAF
requests, ensures that only trusted authenticators can be

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

Acronym Full name Description

RP Relying Party The server-side, which contains a web server and a UAF server.
WS Web Server A part of the Relying Party that interacts with the User Agent and UAF Server and forwards the UAF protocol messages.
US UAF Server A part of the Relying Party that handles the UAF requests, ensures that only trusted authenticators can be registered, manages the association of authenticators to user

accounts, and evaluates user authentications.
UA User Agent A user application that supports the UAF protocol.
UC UAF Client A system service or application that implements the client-side logic of the UAF protocol.
ASM Authenticator Specific Module An authenticator abstraction layer that provides a uniform API for the upper layer.
UName Username A human-readable string identifying a user’s account at a Relying Party.
AppID Application Identifier A URL pointing to the trusted facets.
FacetID Application Facet Identifier A platform-specific identifier (URI) for an application facet to indicate how an application is implemented on various platforms (such as Web applications, Android

applications, or IOS applications).
CallerID Caller Identifier The ID the platform has assigned to the calling UAF Client. On different platforms, the CallerID can be obtained differently.
PersonaID Persona Identifier An identifier assigned to every operating system user account, which is obtained by the ASM from the operational environment.
SData Server Data A session identifier created by the Relying Party.
Chlg Server Challenge A random value that is provided by the FIDO UAF Server in the UAF protocol requests.
Tr Transaction Text Text to be confirmed in the case of transaction confirmation.
TLSData Channel Binding A channel binding allows applications to establish that the two end-points of a secure channel at one network layer are the same as at a higher layer by binding

authentication to the higher layer to the channel at the lower layer.
AAID Authenticator Attestation Identifier A unique identifier assigned to a model, class, or batch of FIDO UAF Authenticators that all share the same characteristics
CNTR Signature counter A monotonically increasing counter maintained by the authenticator. It is increased on every use of the Authentication private key. FIDO UAF Server uses this value

to detect cloned authenticators.
tok ASMToken A randomly generated secret when the ASM is launched the first time, and the ASM will maintain this secret until the ASM is uninstalled.
ak Key handle access token An access control mechanism for protecting an authenticator’s FIDO UAF credentials. It is created by the ASM by mixing various sources of information.
fc Final Challenge The final challenge for the Challenge-Response mechanism.
h KeyHandle A key container created by a FIDO UAF Authenticator, containing a private authentication key and (optionally) other data (such as Username).
KeyID Key Identifier An opaque identifier for an authentication key registered by an authenticator with a FIDO UAF Server.
skAT Attestation Private Key The private asymmetric key used for FIDO UAF Authenticator attestation.
pkAT Attestation Public Key The asymmetric public key used for FIDO UAF Authenticator attestation.
skAU Authentication Private Key User authentication private key generated by FIDO UAF Authenticator.
pkAU Authentication Public Key User authentication public key generated by FIDO UAF Authenticator.
kW Wrapping Key A symmetric key to wrap the data inside the authenticator

TABLE 1
Acronyms and descriptions.

registered, manages the association of authenticators to user
accounts, and evaluates user authentications.

It is necessary to separate the operations of WS and
US, and analyze the messages between them because WS
and US are not necessarily in the same trusted domain. WS
directly communicates with UA, it can obtain sensitive data,
such as TLSData, the information from the TLS channel of
UA, UName, and the inputs from users during the login
process with the original authentication method.

The UAF specifications require TLS communication be-
tween a UA and a WS. Other entities communicate via
inter-process communication (IPC) methods or hardware
and software communication.

2.2 Authenticator Registration

Figure 2 depicts the message flows of the UAF authenticator
registration operation using a 1B authenticator.

Upon the success of the original authentication method,
e.g., text-based password, WS gets the UName and TLS
channel information TLSData of this session. Then WS sends
them to US to prevent the TLS MITM attack [40]. US
stores UName and TLSData, generates a registration request
〈UName, AppID, SData, Chlg〉, and sends it to UC. UName
identifies the user, while AppID is a URL that points to a list
of trusted user agents. Chlg is a random challenge value, and
SData is a session identifier created by the Relying Party.

After receiving the request from US, UC retrieves the
trusted user agent list from AppID and verifies if FacetID is
on the list [24]. When US does not provide AppID, UC does
not verify the FacetID but sets the AppID to the FacetID. UC
stores the session ID SData as xSData and obtains TSLData
of the TLS channel. Then, UC sends UName and the final
challenge fcp = 〈AppID, FacetID, Chlg, TLSData〉 to ASM.

ASM computes the final challenge fc = hash(fcp) and
a token ak = hash(AppID || tok || CallerID || PersonaID
), where || denotes concatenation. ak is a token under
the KHAccessToken mechanism, which is an access control
mechanism for protecting an authenticator’s FIDO UAF cre-
dentials from unauthorized use [29]. The authenticator uses
ak in the procedure of authentication to verify ASM. Then,
ASM sends 〈UName, AppID, ak, fc〉 to the authenticator.

The authenticator updates the token ak = hash(ak ||
AppID). Then, the authenticator triggers its built-in matcher,
e.g., fingerprint sensor, to locally verify the user’s identity.
Then, an authentication key pair 〈skAU , pkAU 〉 for this user
account is generated. The authenticator generates a random
KeyID as the key identifier. The authenticator computes
a key handle h = EkW

(skAU , ak, UName, KeyID), where
EkW

is the symmetric encryption. After that, the authentica-
tor generates a random signature counter CNTRA, which
should be synchronized with US. CNTR can be used by US
to detect cloned authenticators. Finally, the authenticator
computes the signature S = signskAT

(AAID, fc, KeyID,
CNTRA, pkAU), where sign is a sign function, and sends
〈AAID, fc, KeyID, CNTRA, pkAU , S〉 to ASM. ASM stores
CallerID, AppID, h, KeyID and sends the messages to UC.
UC forwards the message, xSData, and fcp to US.

To verify US is in the same session with UA and UC,
US compares xfc = hash(AppID || Chlg || TLSData) with
the received fc and compares SData with xSData. Next,
it verifies fcp.AppID, fcp.Chlg, and fcp.TLSData with those
stored in US, and checks if fcp.FacetID is in the trusted
FacetIDs list. Then, US verifies the signature S with the
attestation public key (pkAT) of this authenticator. If the
signature matches, US stores CNTRA, pkAU , KeyID, and
AAID and completes this registration.

2.3 Authentication

Figure 3 depicts the message flows of the authentication op-
eration using a 1B authenticator to step-up authentication,
which can also be extended to the transaction confirmation
operation. The transaction confirmation offers support for
prompting a user to confirm a specific transaction with a
secure display device. In Figure 3, the transaction confirma-
tion related operations are marked with a ‘[]’.

In authentication and transaction confirmation, the user
initiates authentication with the UA on the device and WS
can obtain the UName of this session. After receiving the
UName and TLSData from WS, US sends an authentication
request 〈AppID, KeyID, SData, Chlg, [Tr]〉 to UC. Then UC
verifies FacetID, computes fcp = 〈AppID, Facet, Chlg, TLS-
Data〉, and sends 〈fcp, KeyID, [Tr]〉 to ASM.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

AAID, kW , CNTRA FacetID AppID, pkAT

Authenticator

fcp ← 〈AppID, FacetID, Chlg, TLSData〉

S ← signskAU
(AAID, n, fc,KeyID, xCNTRA, pkAU)

UName, AppID, SData, Chlg

UName, AppID, ak, fc

AAID, fc, KeyID, h

new 〈skAU , pkAU 〉

h ← EKW (skAU , ak, UName, KeyID)

get TLSData from TLS channel

ak ← hash(ak || AppID)
verify the user

xSData ← SData

Tok, CallerID, PersonaID, h

fc ← hash(fcp)
ak ← hash(AppID || Tok || CallerID || PersonaID)

get trust facet list from AppID

UName, fcp

CNTRA, pkAU , S, CertAT

AAID, fc, KeyID

CNTRA, pkAU , S, CertAT

UName, AppID, SData, Chlg

check if FacetID in the list

ASM UAF Client User Agent Web Server UAF Server

new random Chlg

new random SData

UName, AppID, SData, Chlg

Check:

fcp.AppID == AppID

fc == hash(fcp)
CheckSignpkAT

(S, 〈AAID, fc,KeyID,CNTRA, pkAU 〉)
If right then:

CNTRS ← xCNTRA

if fcp.FacetID is in the trusted FacetIDs list

xSData == SData

fcp.TLSData == TLSData

fcp.Chlg == Chlg

login by the original authentication method

get TLSData from TLS channel

UName, TLSData

store TLSData

generate random KeyID

new sign counter CNTRA

store CallerID. AppID, h, KeyID

xSData, AAID, fc, KeyID
CNTRA, pkAU , S, fcp, CertAT

xSData, AAID, fc, KeyID

CNTRA, pkAU , S, fcp, CertAT

xSData, AAID, fc, KeyID

CNTRA, pkAU , S, fcp, CertAT

store pkAU , KeyID. AAID, CNTRS

UName

Fig. 2. Registration of the Authenticator

Once ASM receives the message, it computes the final
challenge fc = hash(fcp) and the token ak = hash(AppID
|| tok || CallerID || PersonaID), after which it locates h by
KeyID and sends 〈ak, fc, AppID, h, [Tr]〉 to the authenticator.

Upon receiving the message, the authenticator updates
the token ak = hash(ak || AppID) and triggers its built-
in matcher to verify the user’s identity. Then, the authen-
ticator computes 〈skAU , xak, xUName, KeyID〉 = DkW

(h),
where DkW

is the decryption function. Next, the authen-
ticator checks if xak matches ak. If the check passes, the
authenticator displays the transaction text Tr on the secure
display for the user to confirm. Then, it computes hTr
= hash(Tr) and increases CNTRA to xCNTRA. A random
value n is generated to protect the authenticator from replay
attacks. Finally, the authenticator computes the signature
S = signskAU

(AAID, n, fc, [hTr], KeyID, xCNTRA) and
sends 〈AAID, n, fc, [hTr], KeyID, xCNTRA, S〉 to UC,
which sends xSData and fcp to US.

US locates pkAU of the user by 〈UName, AAID’, KeyID〉.
It compares SData and xSData to make sure it is the same
session. Next, it verifies fcp.AppID, fcp.Chlg and fcp.TLSData
correspond to those stored in US, and checks if fcp.FacetID is
in the trusted FacetIDs list. Then, it compares AAID’ with
AAID to ensure that the message comes from the same
authenticator registered with US. Then US computes xfc
= hash (AppID || Chlg || TLSData) and compares it with fc
to make sure the response is right. Then it compares hTr with
hash(Tr) and verifies the signature S. Finally, US checks
whether xCNTRA increases compared to CNTRS , if not,

the sync fails. If all the checks pass, US updates CNTRS

with xCNTRA and finishes the authentication process.

Authenticator Registration Authentication

1B
random KeyID

h = EkW
(skAU , ak, UName, KeyID)→ ASM

ak = hash(AppID || tok || CallerID|| PersonaID)

login: US does not provide KeyID
step-up: US provides KeyID

2B
random KeyID

h = EkW
(skAU , ak, KeyID)→ ASM

ak = hash(AppID || tok || CallerID || PersonaID)
step-up: US provides KeyID

1R
random KeyID

h = EkW
(skAU , ak, UName, KeyID)→ Authenticator

ak = hash(AppID)

login: US does not provide KeyID
step-up: US provides KeyID

2R
KeyID = h

h = EkW
(skAU , ak)→ US

ak = hash(AppID)
step-up: US provides KeyID

TABLE 2
Differences under different types of authenticators and use cases.

2.4 Protocol Operations Under Different Authentica-
tors and Use Cases
In FIDO, bound authenticators (1B and 2B) are embedded
into a user’s device, e.g., a built-in fingerprint sensor. Roam-
ing authenticators (1R and 2R) are not bound to any device,
e.g., a USB dongle with a built-in touch device. Users can
use roaming authenticators with any number of devices.
The 1st-factor authenticators (1B and 1R) normally operate
as the first factor to authenticate users, while the 2nd-factor
authenticator can operate in multi-factor authentication.

Also, there are two use cases when it comes to an
authenticator executing the sign command. When there is
no user session (no cookies), US communicates with UA
for the first time and does not know who the user is and
cannot provide KeyID associated with the user. We call this
case login authentication. The other case is called step-up

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

AAID, kW , CNTRA FacetID

AppID, AAID’

Authenticator

fcp ← 〈AppID, FacetID, Chlg, TLSData〉

Check:

If right then:

xCNTRA ← CNTRA + 1

S ← signskAU
(AAID, n, fc, [hTr],KeyID, xCNTRA)

AppID, KeyID, SData, Chlg, [Tr]

ak, fc, AppID, h, [Tr]

AAID, n, fc, [hTr]

new random n

xak == ak

xSData, AAID, n, fc, [hTr]

〈skAU , xak, xUName, KeyID〉 ← DkW (h)

[hTr ← hash(Tr)]

get TLSData from TLS channel

ak ← hash(ak || AppID)
verify the user

[display and let the user verify the Tr]

xSData ← SData

Tok, CallerID, PersonaID, h

fc ← hash(fcp)
ak ← hash(AppID || Tok || CallerID || PersonaID)

get trust facet list from AppID

fcp, KeyID, [Tr]

KeyID, xCNTRA, S
AAID, n, fc, [hTr]

KeyID, xCNTRA, S KeyID, xCNTRA, fcp, S
xSData, AAID, n, fc, [hTr]

KeyID, xCNTRA, fcp, S

AppID, KeyID, SData, Chlg, [Tr]

KeyID, pkAU , CNTRS

check if FacetID in the list

locate h by KeyID

ASM UAF Client User Agent Web Server UAF Server

new random Chlg

new random SData

[get Tr]

AppID, KeyID, SData, Chlg, [Tr]

Check:

fcp.AppID == AppID

fc == hash(fcp)

CheckSignpkAU
(S, 〈AAID, fc, [hTr],KeyID, xCNTRA〉)

If right then:
CNTRS ← xCNTRA

locate pkAU by 〈UName, AAID’, KeyID〉

[hTr == hash(Tr)]

AAID == AAID’
xCNTRA == CNTRS + 1

if fcp.FacetID is in the trusted FacetIDs list

xSData == SData

fcp.TLSData == TLSData

fcp.Chlg == Chlg

xSData, AAID, n, fc, [hTr]

KeyID, xCNTRA, fcp, S

initiate authentication

get TLSData from TLS channel

TLSData

store the TLSData

Fig. 3. Authentication operation: the operations framed by ‘[]’ are needed only in the transaction confirmation operations.

authentication, where there is already a user session. US
knows who the user is and provides KeyID associated with
the user. For example, transaction confirmation can only
happen when there is a user session.

The UAF protocol under different types of authenticators
and use cases differ in some steps and messages [28]. Table 2
summarizes the differences: i) only 1st-factor authenticators
(1B and 1R) can be used in login authentication cases; ii) 2R
authenticators use h as KeyID, whereas other authenticators
generate a random KeyID; iii) since bound authenticators do
not have internal storage, they store h in ASM. 1R authen-
ticators have internal storage and store h inside themselves.
The protocol requires 2R authenticators to store h at US; iv)
if KeyID is generated randomly, it is stored in h; v) if it is a
1st-factor authenticator (1B and 1R), h contains UName; vi)
for bound authenticators, ASM generates ak with AppID,
tok, CallerID, and PersonaID. For roaming authenticators, ak
only contains AppID; vii) in the authentication process, US
provides KeyID only for step-up authentication cases.

In addition, US may not provide AppID in its requests.
When US provides AppID, UC retrieves the trusted user
agent list from AppID and verifies if FacetID is on the list.
When US does not provide AppID, UC sets the AppID
to FacetID during the registration process, US stores this
FacetID, and the account cannot be used by other application
facets. In authentication process, UC still sets the AppID to
FacetID, US will check whether it matches the FacetID stored

during the registration process.
Considering the cases where the US does not provide

AppID covers more scenarios defined in the specifications.
The necessity of providing AppID can be further illustrated
by comparing the verification results in the scenarios where
AppID is provided or not.

3 THREAT MODEL AND SECURITY GOALS

The UAF specifications list their security assumptions in
Section 6 of the security reference [26] and provide the al-
lowed cryptography list [31], the allowed operating environ-
ment list [32], the authenticator metadata requirements [33],
and the authenticator security requirements [34] in the
respective documents. However, the security assumptions
are very strong and impractical, and many real-world de-
ployments do not strictly follow them. To provide a more
comprehensive analysis, we strive to analyze under the
security assumptions that cover more realistic scenarios.

Because automation in the extraction and formalization
of security assumptions and goals from lengthy and am-
biguous natural language documents is still very challeng-
ing, we manually extract the security goals of the UAF from
several documents and translate the informal descriptions
of the security goals into precise and formal expressions,
which would be the precondition for the formal analysis.
We use our experience to make choices in what to model
and how to model to achieve a balance between analysis
feasibility and model accuracy [26]–[29].

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

3.1 Assumptions and Threat Model
3.1.1 Assumptions on Cryptographic Algorithms
We assume the cryptographic algorithms are secure, which
means without knowing the correct keys, the adversary can
never forge signatures or decrypt messages.

3.1.2 Assumptions on Channels and Entities
UAF uses five channels, as shown in Figure 1. The com-
munications among Authenticator, ASM, UC, and UA use
interprocess communication (IPC) channels or hardware
and software communication channels. The communica-
tions between UA and WS use a network channel, which
is protected by the TLS. Unlike the DY model, which grants
the attacker full control over the network, the attacker in
the UAF model should only control the channel between
malicious entities. We assume that i) the attacker cannot
eavesdrop, intercept, or manipulate the communications on
an established channel between legitimate entities; but ii) an
attacker can install malicious entities to initiate and accept
communication requests. For example, a user may be tricked
into installing a malicious UC, which could communicate
with a legitimate UA or ASM. We verify if the security
properties of UAF hold when there are different malicious
entities. In addition, applications are subject to known soft-
ware attacks and may be controlled by attackers (e.g., hook,
root), so we verify if the security properties of UAF hold
when each of the entities is compromised. We also consider
malicious or compromised authenticators because i) in some
real-world deployments, the authenticator is implemented
as software; ii) hardware-based authenticators are subject to
side-channel attacks [41], [42].

3.1.3 Assumptions on Data Protections
We assume the following data fields are public, and the
attacker has access to all of them: FacetID, CallerID, AAID,
AppID, UName, pkAT , pkAU . We verify if the security prop-
erties of UAF hold when the following data is compromised
or leaked: kW , tok, CNTR, h, skAT , and skAU .

3.1.4 Assumptions on Authenticators
We assume the authenticator always authenticates users
correctly, so US authenticating the authenticator is equiv-
alent to US authenticating the user. Because a large number
of authenticators may share the same AAID and skAT for
privacy preserving [30], we assume the attacker has an
authenticator with the same skAT and AAID as the user’s,
with which the attacker can calculate the signature and pass
the authentication of US.

3.2 Formalization of UAF’s Security Goals
The formal expressions are indicated in italic text.

3.2.1 Authentication Properties
To precisely formalize the authentication properties, we
resort to Lowe’s taxonomy of authentication properties [46],
which can be directly modeled in formal methods and
widely used in previous research [4]. Lowe’s taxonomy
specifies multiple levels of authentication, from A’s point of
view, between an initiator A and a responder B: i) aliveness:

whenever A completes a run of the protocol, the aliveness
property ensures that B has previously been running the
protocol, but not necessarily with A; ii) weak agreement:
whenever A completes a run of the protocol, the weak agree-
ment property ensures that B has previously been running
the protocol with A, but not necessarily with the same data;
iii) non-injective agreement on data items ds: whenever A
completes a run of the protocol, the non-injective agreement
property ensures that B has previously been running the
protocol with A. Besides, A and B agreed on the data values
in ds. However, the property cannot guarantee that there is a
one-to-one relationship between the runs of A and the runs
of B; iv) injective agreement on data items ds: whenever
A completes a run of the protocol, the injective agreement
property ensures that B has previously been running the
protocol with A. Besides, A and B agreed on the data values
in ds, and each such run of A corresponds to a unique run
of B. This prevents replay attacks.

The authentication goals are extracted from Section 4 of
the security reference [26]. The security goals SG-1 to SG-9
do not specify the level of authentication that UAF should
provide. With the descriptions of attack resistance in SG-10
to SG-13, we derive that the authentication in UAF should
be injective agreement. The overall goal of the UAF is SG-1.

SG-1 Strong User Authentication: Authenticate (i.e.,
recognize) a user and/or a device to a Relying Party
with high (cryptographic) strength.

After a successful authentication process, US (identified
by AppID) shall authenticate a user account (identified by
UName) with a unique registered authentication key pair
(identified by KeyID) generated by a registered authenticator
(identified by AAID). Formally, US must obtain non-injective
agreement on UName, AAID, KeyID, AppID with the authenti-
cator after the authentication process.

The authentication goals are also complemented by SG-
10, SG-11, SG-12, and SG-13.

SG-10 DoS Resistance: Be resilient to Denial of Service
Attacks. I.e., prevent attackers from inserting invalid
registration information for a legitimate user for the
next login phase. Afterward, the legitimate user will
not be able to log in successfully anymore.
SG-11 Forgery Resistance: Be resilient to Forgery At-
tacks (Impersonation Attacks). I.e., prevent attackers
from attempting to modify intercepted communica-
tions to masquerade as the legitimate user and log into
the system.
SG-12 Parallel Session Resistance: Be resilient to
parallel Session Attacks. Without knowing a user’s
authentication credential, an attacker can masquerade
as a legitimate user by creating a valid authentication
message out of some eavesdropped communication
between the user and the server.
SG-13 Forwarding Resistance: Be resilient to Forward-
ing and Replay Attacks. Having intercepted previous
communications, an attacker can impersonate the legal
user to authenticate to the system. The attacker can
replay or forward the intercepted messages.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

To prevent DoS attacks, the protocol must ensure invalid
information will not affect the user’s authentication, which
means the attacker cannot pass the authentication of US,
thus making CNTR of US and CNTR of the authenticator
out of sync. Therefore, the protocol must ensure that every
successful authentication of US is associated with the legit-
imate user’s verification. The Forgery Resistance, Parallel
Session Resistance, and Forwarding Resistance require the
protocol to prevent impersonation attacks by replaying,
constructing, or manipulating previous messages. Formally,
US must obtain injective agreement on UName, AAID, KeyID,
AppID with the authenticator after the authentication process.

SG-5 Verifier Leak Resilience: Be resilient to leaks
from other relying parties. I.e., nothing that a verifier
could possibly leak can help an attacker impersonate
the user to another relying party.
SG-6 Authenticator Leak Resilience: Be resilient to
leaks from other FIDO Authenticators. I.e., nothing that
a particular FIDO Authenticator could possibly leak
can help an attacker to impersonate any other user to
any relying party.

We formalize them to: after the authentication process,
US must obtain injective agreement on UName, AAID, KeyID,
AppID with the authenticator when another US leaks the same
user’s pkAU , UName, AAID, KeyID, CNTR or when another
authenticator leaks the same user’s skAU , UName, AAID, CNTR,
KeyID.

After a successful authentication for the user, it is the
UA but not the user who has been authorized. If the correct
user is verified but the malicious UA is authorized, the
protocol is still not secure, so after the authentication process,
US must obtain injective agreement on UName, AAID with UA
when another US leaks the same user’s pkAU , UName, AAID,
KeyID, CNTR and when another authenticator leaks the same
user’s skAU , UName, AAID, CNTR, KeyID.

In the registration process, the security reference only
presents the following goal.

SG-7 User Consent: Notify the user before a rela-
tionship to a new relying party is being established
(requiring explicit consent).

This goal indicates the registration request must have
been initiated by a legitimate user. We assume the legitimate
UA that initiated the registration request can represent the
consent of the user, so US must obtain injective agreement on
UName, AppID with UA after the registration process.

However, even though the registration process has been
consented by the user, we cannot guarantee that it is the
user’s authenticator who has been registered. So the reg-
istration should additionally imply that US must obtain
injective agreement on UName, AAID, KeyID, AppID, pkAU

with the authenticator after the registration process.
In a transaction confirmation process, any tampering

with the transaction message should be detected, and the
user cannot deny the transaction message, as in SG-14.

SG-14 Transaction Non-Repudiation: Provide strong
cryptographic non-repudiation for secure transactions.

Formally, US must obtain injective agreement on Tr with the
authenticator after the transaction confirmation process.

3.2.2 Confidentiality Properties

The confidentiality of skAT , skAU , and kW is required
in Section 4.1 of the security reference [26]. Formally, the
cryptographic key skAT , skAU , and kW should remain secret in
the presence of the active attacker during the registration and the
authentication process.

KHAccessToken (ak) is an access control mechanism for
protecting an authenticator’s UAF credentials from unau-
thorized use. Once ak is leaked, the attacker can imperson-
ate ASM and call the authenticator. ASM should maintain
the secrecy of ak, as in Section 6.1 [29]. Formally, ak should
remain secret in the presence of the active attacker during the
registration and the authentication process.

3.2.3 Privacy Properties

The UAF protocol should ensure that the private data re-
lated to the user cannot be compromised. Otherwise, the
attacker can identify a user or trace user behaviors.

First, Tr is sensitive data, so it must remain secret in the
transaction confirmation process. Otherwise, the attacker
can count transactions and track user behaviors. So, Tr
should remain secret in the presence of the active attacker during
the transaction confirmation process.

Similarly, CNTR must remain secret. Or, the number of
successful authentications is known to the attacker, and the
attacker can track user behaviors. So CNTR should remain
secret in the presence of the active attacker during the registration
and the authentication process.

The higher requirement for privacy is unlinkability:

SG-4 unlinkability: Protect the protocol conversation
such that any two Relying Parties cannot link the
conversation to one user.

The main purpose of this goal is to mitigate the potential
for collusion amongst USs. Generally, we disregard the link-
ability due to the irresistible external factors (same UName,
same IP address, etc.). So the UAF should provide unlinkability
between different USes.

4 MODELING UAF PROTOCOL IN PROVERIF

In this section, we briefly introduce the formal verification
tool ProVerif and explain how security properties can be
modeled in ProVerif in general. Then, we present the mod-
eling of security goals and protocol operations. For some
of the attack models that are not integrated with ProVerif,
we present the tricks we used to implement them. We
believe other formal verification tools, such as Tamarin [47],
AVISPA [2], can also be used to model and verify UAF. We
choose ProVerif due to its popularity and ease of use.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

4.1 Overview of ProVerif

ProVerif is an automatic symbolic protocol verifier, which
can verify various security properties, including confiden-
tiality, authentication, and observational equivalence [9].
Comparing with other tools, such as AVISPA [2], CL-
AtSe [52], OFMC [5], Tamarin [47], FDR [45], Scyther [17],
SATMC [3], Cryptyc [36], TA4SP [11], Maude-NPA [20],
ProVerif not only solves the problem of state explosion but
also supports unbounded sessions. Although ProVerif does
not support algebraic operations, such as power operation
and XOR operation, it can be used to verify the UAF
protocol since the protocol does not use such operations.

ProVerif verifies in an extension of the applied π-
calculus with cryptography. Based on first-order logic res-
olution rules on Horn clauses [54], it determines whether
the properties are met. If a property is violated, it con-
structs an attack at both the Horn clause level and the
π-calculus level. In π-calculus, messages are described as
terms, and a term is constructed by constructors. For ex-
ample, we can define senc(M,K) as a symmetric en-
cryption of the message M under the key K, where
senc(bitstring, key) is a constructor. The correspond-
ing destructor sdec(bitstring, key) is defined as:

fun senc(bitstring,key):bitstring.
reduc forall m:bitstring, k:key;sdec(senc(m,k),k)=m.

4.2 Formalizing Security Goals in ProVerif

ProVerif can prove reachability properties, correspondence
assertions, and equivalence properties.

Confidentiality is a reachability property. ProVerif checks
all possible protocol executions and all possible attacker
behaviors to infer which terms are available to the attacker.
In the following example, ProVerif tests the confidentiality
of the term M and the confidentiality of x.

query attacker(M).
query secret x.

Authentication properties can be verified via the Corre-
spondence assertions. Correspondence assertions are used to
capture the relationships between events. If the specified
events can be executed in the correct order and they have the
same arguments, the related properties can be guaranteed.
For example, if entity A executes an event e1 (A terminates
the protocol with B) with the argument x (B’s identity) and
there is an entity B that has executed an event e2 (B started
a session of the protocol with A) with the same argument
x, from A’s point of view, B has finished a non-injective
agreement with A on data x. We can use the following query
to check the non-injective agreement on data x:

query x:ID; event(e1(x)) ==> event(e2(x)).

Unlinkability is an equivalence property, which could be
verified using observational equivalence [9]. If the attacker
cannot distinguish a process P from a process Q, P and Q
are observational equivalent P ≈ Q where the processes
P and Q have the same structure and differ only in the
choice of terms. In ProVerif, the equivalence is written by
a single “biprocess”, which encodes both P and Q. Such a
biprocess uses the construct diff[M,M’] to represent the

terms that differ between P and Q, where P uses the first
component of choice M, while Q uses the second one M’.
For example, if P and Q are protocols that have the same
structure but only differ in the parameter a (P for a1 and Q
for a2), then the equivalence of P and Q can be expressed
by: P (a1) ≈ P (a2). The processes can be expressed as
follows, and ProVerif verifies whether they are equivalent.

free a:bitstring.
free b:bitstring.
let P_and_Q(M:bitstring) = (...) (* definition of

the processes *)
process

!P_and_Q(choice[a,b])

Challenge. Modeling the unlinkability goal in the UAF
is difficult because ProVerif could only verify the observa-
tional equivalence from the perspective of the attacker. But
the unlinkability requirement in UAF is from the perspective
of WS. To model this situation, we need to make sure the
attacker knows what WS knows. However, in our model, the
attacker can participate in the protocol as malicious entities
and can actively manipulate the session data to break the
security goals, which WS never does. So we model the
unlinkability in the following way: i) when analyzing the
unlinkability, we assume there are no malicious entities in
the protocol run; ii) we assume the channel between WS
and UA is public, which allows the attacker to have the
same knowledge as WS; iii) we assume the attacker is a
passive attacker who could only listen to the communication
channel between WS and UA.

4.3 ProVerif Models of the UAF
We modeled different types of authenticators and applica-
tion scenarios, which takes 900 lines of ProVerif code. We
analyzed whether UAF meets the security goals in different
scenarios using different security assumptions and process
combinations. We discuss the challenges we overcame:

4.3.1 Modeling Malicious Entity Scenarios
ProVerif models two types of channels, the public channel
and the private channel. The public channel is assumed to be
completely controlled by the attacker who has the “Dolev-
Yao” capabilities, while the data on the private channel
is excluded from the attacker’s knowledge. Unfortunately,
neither of them can directly model the scenarios where the
communication between honest entities is assumed secure,
but the attacker can act as a malicious entity to communicate
with some of the entities. To this end, we used a modeling
trick and verified its correctness with the developers of
ProVerif. We define two entity processes A and A’ (both
of them communicate with process B) running in parallel,
where A communicates via a private channel while A’
communicates via a public channel. The attacker can control
the public channel, so he/she can act as a malicious B and
communicate with A’. When removing process A’, there is
no malicious B in the environment.

This model becomes more complex in UAF because it
contains many entities. For example, ASM communicates
with two entities, UC and authenticator. We define a process
macro ASM, which contains two arguments of type channel
MC and MA, where MC for communicating with UC and MA
for communicating with the authenticator, as defined below:

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

let ASM(MC:channel,MA:channel) = (...)

By controlling the type of MA and MC, different scenarios
can be modeled. The following statements represent that
from an ASM’s point of view, the system has no malicious
authenticator and UC since there is only an ASM that
uses private channel MC and MA to communicate. Note that
channels defined in the process by “new” are private.

free c:channel[public].
process

new MC:channel;
new MA:channel;
ASM(MC,MA)|UC(MC)|Authenticator(MA)

The following statements represent a system that has
malicious authenticators since there is an ASM that uses
public channel c to communicate with the authenticator.

free c:channel[public].
process

new MC:channel;
new MA:channel;
ASM(MC,MA)|ASM(MC,c)|UC(MC)|Authenticator(MA)

This trick requires two processes (only differ in chan-
nels) to run in parallel. However, ProVerif 2.00 does not
allow the same event to execute several times in the same
branch in verifying event correspondence, which raises the
difficulty for ProVerif to verify such scenarios. To address
this challenge, we used an ‘if’ statement to force the process
macro that contains the test events to only present once in
a branch. As the following code shows, we run two ASM
processes in parallel with different channel parameters to
make sure only one of them is on a certain branch. The main
process receives branch information on the public channel c
and lets the attacker choose between the two branches. We
confirmed the correctness of this trick with the developers
of ProVerif, who also fixed the problem in ProVerif 2.01.

free c:channel[public].
process
!(

new MA:channel;
new MC:channel;
Authenticator(MA)|
(

in(c,branch:bool);
if branch = True then

ASM(MC,MA)
else

ASM(MC,c)
)

)

4.3.2 Modeling Unlinkability Scenarios
Modeling the UAF operations for unlinkability analysis is
challenging. We explicitly model the scenario in which two
RPs might authenticate the same user or different users.

First, we consider two RPs run in parallel with different
AppID. Then, we define a System macro, which represents
protocol runs that RP registers or authenticates a user. By
controlling the arguments of the System, we specify which
RP is running. Last, we specify two Systems to run. One
of them represents an RP that authenticates a user, whereas
the other represents another RP that authenticates the same
user or authenticates another user.

Users use different devices, so their authenticators have
different kW , and their ASMs have different tok. Whether
the two RPs authenticate the same user, skAU and KeyID
in the system are different because the authenticator al-
ways generates new skAU and KeyID for each account in
registration. Since different users may use authenticators
with the same AAID, we do not consider the differences
in AAID. Similarly, in different user devices, CallerID and
FacetID could be the same, so we do not consider either. We
do not consider the impact of UName on unlinkability.

process
...
!system(AppID,AAID,skAU,KeyID,kW,tok,UName,

FacetID,CallerID,PersonaID,CNTR)|
!system(AppID2,AAID,skAU2,KeyID2,choice[kW,kW2],

choice[tok,tok2],UName2,FacetID2,CallerID,
PersonaID,CNTR2)

4.3.3 Identifying Minimal Assumptions
In our previous work, we obtained the minimal assumptions
of the security properties by verifying the cases with dif-
ferent combinations of assumptions. We defined a variable
security set A, where A = ∅ represents no security assump-
tion. Our tool UAFVerif, which is a front-end of ProVerif,
can add security assumptions {a1, ..., an} intoA to generate
different scenarios and invoke ProVerif to analyze if the
protocol satisfies the security properties under these security
assumptions. However, a specific copy of ProVerif code is
required for each case, and the read and write operations of
files increase the overhead of time.

With the help of correspondence assertions in π-calculus,
we can identify the minimal assumptions with a single file
and reduce the overhead caused by frequent file operations.
We compare the performance of UAFVerif and UAFVerif+
on the same computer with Intel(R) Core(TM) i7-6500U CPU
and 8GB RAM. As shown in Table 3, UAFVerif+ needs more
code to model and analyze more scenarios in the refined
formal model. While the number of files to be analyzed is
greatly reduced, as UAFVerif+ only generates files for each
security goal, not each scenario. Meanwhile, it only takes
half the time of UAFVerif to get all the analysis results.

Version Codes (line) Cases Files Time (h:min)

UAFVerif 684 (Python) + 594 (ProVerif) 417,792 417,792 10:57
UAFVerif+ 1024 (Python) + 992 (ProVerif) 696,284 104 4:17

TABLE 3
Comparison of UAFVerif and UAFVerif+.

Our method is not limited to the analysis of UAF. We
also developed a tool AutoMinAs to automatically identify
minimal assumptions for any other protocols. The protocol
analysts only need to specify the protocol process, the as-
sumptions, and the security goals of a protocol. AutoMinAs
can automatically generate all the correspondence assertions
and ProVerif queries for each security goal and then invokes
ProVerif to obtain the results, which are further processed to
determine the minimal assumptions.

We define events for compromised scenarios, including
the leakage of data fields and the existence of malicious
entities. For example, if the event “leak skau()” is executed,
then the attacker knows skAU . Similarly, if the event “mali-
cious UC to ASM()” is executed, then the attacker can act
as a malicious UC to communicate with the honest ASM.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

free c:channel[public].
event leak_skau().
event leak_cntr().
event malicious_UC_to_ASM().
let ASM(MC:channel,MA:channel) = (...)
let UC(CM:channel) = (...)
process
!(

new MA:channel;
new MC:channel;
(event leak_skau(); out(c,skAU))|(*leak skAU*)
(event leak_cntr(); out(c,CNTR))|(*leak CNTR*)
ASM(MC,MA)|(* honest ASM *)
(event malicious_UC_to_ASM(); ASM(c,MA))|(*ASM

communicate with malicious UC*)
UC(MC)(*honest UAF client*)

)

We can add different combinations of assumptions to set A
by appending corresponding combinations of events to the
query statement. Each query statement represents a specific
scenario. For example, when verifying the confidentiality
of Tr under the scenario without any assumptions (i.e., all
considered data fields are leaked, and all malicious entities
exist), we can use the following query statement:

query attacker(new Tr).

If this query statement is true, then the protocol holds
this property under the scenario with no assumption. When
we need to analyze the protocol under the scenario that the
skAU is not leaked, we can use the following statement:

query attacker(new Tr) ==> event(leak_skau).

The query statement verifies such a fact that when the
attacker can obtain Tr, then skAU must have been leaked. If
this statement is true, the secrecy of skAU is an assumption
for the confidentiality of Tr. Then, when analyzing the
protocol under the scenario that skAU and kW are both
compromised, we can use the following statement:

query attacker(new Tr) ==> event(leak_skau) || event
(leak_kw).

This statement verifies such a fact that when the attacker
can obtain Tr, then either skAU leaks, kW leaks, or both of
them leak. If this statement is true, then the secrecy of skAU

and kW is an assumption for the confidentiality of Tr.
After verifying the query of each property with all com-

binations of events, we can obtain a series of combinations
of assumptions required for the properties. According to
these results, we can obtain the minimal assumptions re-
quired for each property. More formally, with the combi-
nations of assumptions required for the properties, we can
obtain the set A of assumptions that makes the properties
holds. When each proper subset of A cannot satisfy a secu-
rity property, we say satisfying A is a minimal assumption
for the protocol to satisfy this security property.

5 SECURITY ANALYSIS

In this section, we present the formal verification results
of the UAF protocol. We identify the minimal security
assumptions required for each security goal to hold. The
formal verification identifies the design flaws in the UAF,
but not specific implementation vulnerabilities in different

apps. The root causes of these flaws include that FIDO UAF
supports different deployment settings but gives impractical
and ambiguous security assumptions for such settings.

The results are analyzed from 696,284 automatically
generated cases considering different authenticator types,
scenarios, and assumptions. It took 4 hours to analyze all
cases on a computer with Intel(R) Core(TM) i7-6500U CPU
and 8GB RAM.

5.1 Result Overview

Reg. Type 1B 2B 1R 2R

C.

kW
√

skAT
√

skAU ¬kW∨¬M[A]
√ ¬kW∨

(¬S[W]∧¬C[M]∧¬M[A])
ak ¬tok∧¬A[M] ×

CNTR ¬S[W]∧¬C[M]∧¬M[A]
CNTR (non-a) ¬S[W]∧¬U[C]∧¬C[M]∧¬M[A]

A. Basic ¬W [S]∧¬C[U]∧¬M[C]∧¬A[M]

TABLE 4
Minimal assumptions required for the UAF registration process to
achieve confidentiality properties and authentication properties.

Table 4 - 6 presents the minimal assumptions required
for UAF to achieve the confidentiality properties and au-
thentication properties. ‘Reg.’ means the registration pro-
cess, ‘Auth.’ means the authentication process. ‘C.’ means
the confidentiality properties. ‘A.’ means the authentication
properties. ‘Basic’ represents the authentication goals we
explain in Section 3.2, ‘Non-R’ represents the transaction
non-repudiation goal. ‘non-a’ represents the goals under the
protocol that US does not provide AppID.

We present security assumptions in symbols: ‘∧’ denotes
AND, whereas ‘∨’ denotes OR. A, M, C, U, W, and S
represent Authenticator, ASM, UC, UA, WS, and US re-
spectively. ‘¬’ before a data field represents the field is not
compromised. ‘¬’ before ‘X[Y]’ represents that the system
does not have malicious X that can communicate with Y .
For example, ‘¬M [A]’ means that there is no malicious ASM
that can communicate with the authenticator, while ‘¬M [C]’
means that there is no malicious ASM in the system that
can communicate with UC. ‘

√
’ means the protocol meets

the security goal. ‘×’ means the protocol cannot meet the
security goal. ‘−’ means we do not consider this property.

5.2 Confidentiality Properties
As Table 4 shows, the protocol does not disclose kW or skAT

in registration because they do not leave the authenticator.
However, h, which is encrypted by kW and contains skAU ,
will leave the authenticator (except for 1R authenticator,
which stores h in its internal storage). If kW is compromised,
the attacker can decrypt h and get skAU . For 1B and 2B
authenticators, h is only sent from the authenticator to ASM.
So as long as there is no malicious ASM, the attacker cannot
obtain skAU . Confidentiality of skAU holds when using 1R
authenticators since it never leaves the authenticator. 2R
authenticators take h as KeyID and send it to US. Therefore,
the protocol should guarantee that kW will not be com-
promised, or the protocol satisfies ¬S[W] and ¬C[M] and
¬M [A] to ensure the h does not leak. As Table 5 shows in
authentication, for 1B and 2B authenticators, if kW is secure,
the attacker cannot decrypt h to get skAU . If kW is com-
promised, the attacker cannot obtain h from ASM assuming

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Auth. Type 1B 2B
login step-up step-up

C.

skAU ¬kW∨¬A[M]
ak ¬tok∧¬A[M]

CNTR (¬S[W]∧¬W [U]∧¬M[A])∨
(¬S[W]∧¬W [U]∧¬A[M]∧¬kW)

(¬S[W]∧¬M[A])∨
(¬S[W]∧¬A[M]∧¬kW)

CNTR(non-a) (¬S[W]∧W [U]∧¬U[C]∧¬M[A])∨
(¬S[W]∧W [U]∧¬U[C]∧¬A[M]∧¬kW)

(¬S[W]∧¬U[C]∧¬M[A])∨
(¬S[W]∧¬U[C]∧¬A[M]∧¬kW)

Tr ¬W [S]∧C[U]∧¬M[C]∧¬A[M]

A. Basic (¬skAU∧¬A[M])∨
(¬skAU∧¬kW∧¬M[A])

(¬skAU∧¬A[M])∨
(¬skAU∧¬kW∧¬M[A])∨
(¬skAU∧¬kW∧¬W [S])∨

(¬W [S]∧¬C[U]∧¬M[C]∧¬A[M])

Non-R -

(¬skAU∧¬A[M])∨
(¬skAU∧¬kW∧¬M[A])∨
(¬skAU∧¬kW∧¬W [S])∨

(¬W [S]∧¬C[U]∧¬M[C]∧¬A[M])

TABLE 5
Minimal assumptions required for the UAF authentication process to achieve confidentiality properties and authentication properties.

Auth. Type 1R 2R
login step-up step-up

C.

skAU
√

¬kW
ak ×

CNTR (¬S[W]∧¬W [U]∧¬C[M]∧¬M[A]) ¬S[W]∧¬C[M]∧¬M[A]
CNTR
(non-a) ¬S[W]∧¬W [U]∧¬U[C]∧¬C[M]∧¬M[A]) ¬S[W]∧¬U[C]∧¬C[M]∧¬M[A]

Tr ¬W [S]∧C[U]∧¬M[C]∧¬A[M]

A. Basic (¬skAU∧¬C[M]∧¬M[A])
(¬skAU∧¬W [S])∨

(¬skAU∧¬C[M]∧¬M[A])∨
(¬W [S]∧¬C[U]∧¬M[C]∧¬A[M])

(¬skAU∧¬kW∧¬W [S])∨
(¬skAU∧¬kW∧¬C[M]∧¬M[A])∨
(¬W [S]∧¬C[U]∧¬M[C]∧¬A[M])

Non-R -
(¬skAU∧¬W [S])∨

(¬skAU∧¬C[M]∧¬M[A])∨
(¬W [S]∧¬C[U]∧¬M[C]∧¬A[M])

(¬skAU∧¬kW∧¬W [S])∨
(¬skAU∧¬kW∧¬C[M]∧¬M[A])∨
(¬W [S]∧¬C[U]∧¬M[C]∧¬A[M])

TABLE 6
Minimal assumptions required for the UAF authentication process to achieve confidentiality properties and authentication properties2.

no malicious authenticators. For 1R authenticators, since h
does not leave the authenticator, as long as the authenticator
is not compromised, skAU is secure. For 2R authenticators,
since h will be sent from US, the minimal assumption is to
keep the confidentiality of kW .

To maintain the confidentiality of ak in 1B and 2B au-
thenticators, tok cannot be compromised, and there should
not be a malicious authenticator. If the attacker gets tok,
he/she can compute ak = hash(AppID || tok || CallerID ||
PersonaID). Whether it is the registration process or authen-
tication process, ak needs to be sent to the authenticator by
ASM. If there is a malicious authenticator, the attacker can
get the message, which contains ak, from ASM. When using
1R and 2R authenticators, the confidentiality of ak cannot
be satisfied nonetheless because ak only contains AppID,
which is public and known by the attacker. Therefore, the
KHAccessToken mechanism is futile. We will discuss attacks on
this issue in Section 6 and provide a fix in Section 7.2.

To maintain the confidentiality of CNTR in registration,
the deployment of the protocol must satisfy ¬S[W] and
¬C[M] and ¬M [A] when US provides AppID. Otherwise,
a malicious entity can initiate a registration process to get
CNTR from the response generated by the authenticator.
When US does not provide AppID, the minimal assumption
additionally needs ¬U [C] since the UC cannot verify UA.

To maintain the confidentiality of CNTR in the authen-
tication process when US provides AppID, for 1B authen-
ticators when login, the protocol needs to satisfy ¬S[W]
and ¬W [U] and ¬M [A], or satisfy ¬S[W] and ¬W [U] and
¬A[M] and kW . Otherwise, the malicious entity can initiate
an authentication process to get CNTR from the response
generated by a malicious authenticator. Since ASM has
access control over UC’s CallerID and UC verifies UA by
AppID, malicious UCs and UAs cannot start the legitimate
authenticator and get CNTR. Without knowing kW , the
attacker cannot calculate h, and the attacker cannot obtain
h if the protocol holds ¬A[M], even there is a malicious

ASM, the attacker cannot start the authenticator. So, the
assumptions ¬M [A] can be replaced by ¬A[M] and ¬kW .
The assumptions when step-up authentication in 1B and 2B
authenticators are similar, except that there is no W [U] since
we assume that the step-up authentication is based on a
trusted connection between WS and UA (already satisfies
¬U [W] and ¬W [U]). For 1R authenticator when login,
since ASM does not verify UC, so the protocol additionally
requires ¬C[M]. Besides, h is stored in the authenticator
rather than ASM, and ak only contains AppID which is pub-
lic to the attacker, so as long as there is a malicious ASM, the
attacker can start the authenticator and obtain CNTR. For 1R
and 2R authenticators when step-up authentication, there is
no W [U] since we assume that the step-up authentication
is based on a trusted connection between WS and UA. To
maintain the confidentiality of CNTR in the authentication
process when US does not provide AppID, the protocol
additionally requires ¬U [C] since the UC cannot verify UA.

Malicious UC, ASM, or authenticator can get Tr from the
caller. This is because Tr is sent from US to the authenticator,
UA does not verify UC, UC does not verify ASM, and ASM
does not verify the authenticator in authentication.

5.3 Authentication Properties

As shown in Table 4, to achieve the authentication goals in
registration, the minimal assumption is ¬W [S] and ¬C[U]
and ¬M [C] and ¬A[M]. The results show that whether
skAT is compromised has little influence on the authentica-
tion goals because the attacker has an authenticator with the
same skAT to register. Therefore, skAT can only guarantee
that the authenticator registered in US must be legitimate
but cannot guarantee the authentication goals of the regis-
tration process. To achieve the authentication goals in the
registration process, the protocol should guarantee that it is
the user’s authenticator that is bound to his/her account but
not the attacker’s authenticator, which requires ¬W [S] and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

¬C[U] and ¬M [C] and ¬A[M]. ProVerif generates an attack
when one of them is not satisfied, which we will discuss in
Section 6. The root cause of this issue is that there is no
access control mechanism from WS to US, from US to WS,
from UA to UC, from UC to ASM, or from ASM to the
authenticator in the registration process. For example, a UA
may send the UAF request to any UC installed on the user’s
devices, including a malicious one.

As shown in Table 5 and 6, during authentication, the
minimal assumptions vary under different types of authen-
ticators and use cases. When using 1B and 2B authenticators,
we found that holding ¬skAU and ¬A[M] is an intuitive
way to meet the authentication goal. That is because if
there is no malicious authenticator, the attacker cannot
obtain h from ASM and cannot decrypt it to get skAU .
And if the attacker does not know skAU , he/she cannot
construct the signature and impersonate the user. Note that
the assumption ¬A[M] can be replaced by ¬kW and ¬M [A]
for the same reason as above. For 1B and 2B authenticators
when step-up authentication, since the protocol is based on
successful login, the attacker cannot use a malicious UA to
send messages to WS. As long as the attack cannot obtain
skAU and there is no malicious WS that can communicate
with the honest US, the attacker cannot break the authen-
tication goal. In addition, even if skAU is leaked, if the
protocol meets ¬W [S] and ¬C[U] and ¬M [C] and ¬A[M],
the attacker cannot send messages to the US and finish the
authentication, and the authentication goal holds.

1R authenticator stores h itself, and ak is only the hash
of AppID known by the attacker, so as long as the attacker
can send the request to the authenticator, he/she can get the
signature and implement the parallel session attack. Com-
pared with 1B authenticators, for 1R authenticators when
login, ¬C[M] is additionally needed, or the attacker can use
a malicious UC to send the request to the authenticator.

For 1R authenticator in step-up authentication, when
the protocol satisfies ¬skAU and ¬C[M] and ¬M [A], the
authentication goal holds. Besides, since the step-up au-
thentication is based on a trust connection (already satisfies
¬U [W] and ¬W [U]), when the protocol satisfies ¬skAU and
¬W [S], even if a malicious entity can act as a middleman,
the attacker inevitably needs to start the honest authentica-
tor and forwards the message to the honest UA to send to
US, which does not break the authentication goals. When
the protocol satisfies ¬W [S] and ¬C[U] and ¬M [C] and
¬A[M], the attacker cannot intercept a message and send
the response, and the authentication goals hold.

For 2R authenticators in step-up authentication, when
the protocol satisfies ¬W [S] and ¬C[U] and ¬M [C] and
¬A[M], the attacker cannot intercept messages. Compared
with 1R authenticators, for 2R authenticators, h is regarded
as KeyID, kept in US, and is sent to the authenticator dur-
ing the authentication process. Once the protocol does not
satisfy ¬kW , the attacker can obtain h by a malicious entity
and obtain skAU by decrypting h to break the authentication
goals. Therefore, the protocol needs to satisfy ¬skAU and
kW and ¬W [S], or ¬skAU and kW and ¬C[M] and ¬M [A].

The minimal assumptions to achieve the non-
repudiation goal are the same as the authentication goals.
Whether AppID is provided or not does not affect the
minimal assumptions of the authentication goals, because

US still verifies FacetID when AppID is not provided.
The results show that when the attacker cannot compro-

mise US, and there are no malicious USs, the protocol can
prevent attacks from malicious WS (that can communicate
with UA) and malicious UA (that can communicate with
UC) because UC verifies FacetID. For example, when UA is
a browser, and the user visits a phishing site, the FacetID,
which is the malicious web origin, will not pass the veri-
fication of UC. If UA is an application, only when UA is
compromised or the user uses a malicious UA, it would
visit a malicious WS. In this situation, FacetID, which is the
identifier of the malicious UA, is not in the trusted user
agent list retrieved from AppID. However, when the honest
RP uses the third-party US rather than deploying US itself,
WS may communicate with the malicious US and break the
authentication goals.

From the results, we found that the attestation mecha-
nism (signed by skAT) can only ensure that it is a legitimate
authenticator who completes the registration but cannot
guarantee that it must be the user’s authenticator, i.e., any-
one with a legitimate authenticator can finish registration
(including the attacker’s authenticator), which may lead to
the attacker binding user account on his/her authenticator.
Note that there are no other authentication measures for
the registration process. So the registration process is more
vulnerable to attacks than the authentication process.

5.4 Unlinkability Property
The verification results show that the protocol can satisfy
unlinkability in both the registration process and the au-
thentication process. In the registration process, it is because
different users can register using the authenticators with
the same AAID and skAT . RPs cannot confirm that the two
registrations are conducted by the same user through AAID
or pkAT , nor can they confirm that the two registrations are
conducted by different people according to AAID or pkAT .

Regardless of whether two accounts registered on two
RPs are from the same user, the authenticator has generated
different skAU and KeyID during the registration process,
so the two RPs cannot distinguish whether the verified
accounts are from the same user based on pkAU or KeyID. In
fact, the information that RP can obtain during an authen-
tication process includes UName, AAID, CallerID, FacetID,
KeyID, and CNTR. AAID cannot be used to distinguish two
users since a large number of authenticators share the same
AAID. CallerID and FacetID are identifiers related to the
applications and the platforms, which cannot be used to
identify the user either. RPs cannot collude and use CNTRs
to find out the accounts of the same user since CNTRs are
independent. So none of the fields helps RPs to distinguish
whether the accounts come from the same user, the protocol
holds the unlinkability in the authentication process.

6 ATTACKS ON THE UAF PROTOCOL

The minimal assumptions in Section 5, which are repre-
sented by the combinations of limitations on atomic adver-
sarial capabilities, describe the security of the protocol in
terms of the conditions required for satisfying each security
property. In this section, we first discuss all theoretical
attacks followed by the discussions on five practical attacks.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

6.1 Theoretical Attacks
By reversing the expressions in Table 4 - 6, we can obtain the
combination of adversarial capabilities to break the security
goals and implement attacks against the UAF protocol. We
summarize them in Table 7 - 9. ‘kW ’ means the kW is
compromised. ‘X[Y]’ represents that there exists malicious
X that can communicate with Y . ‘

√
’ means the attacker can

break the security goals under any conditions. ‘×’ means
there is no way to break the security goals. ‘−’ means we do
not consider this property in this scenario.

Reg. Type 1B 2B 1R 2R

C.

kW ×
skAT ×

skAU kW∧M[A] ×
(kW∧S[W])∨
(kW∧M[A])∨
(kW∧C[M])

ak tok∨A[M]
√

CNTR S[W]∨C[M]∨M[A]
CNTR (non-a) S[W]∨U[C]∨C[M]∨M[A]

A. Basic W [S]∨C[U]∨M[C]∨A[M]

TABLE 7
Adversarial capabilities to break confidentiality and authentication

properties in the UAF registration process.

6.1.1 Break Confidentiality in Registration Process
Rows 2-7 in Table 7 show the adversarial capabilities re-
quired to break confidentiality properties in registration.

First, the attacker cannot break the confidentiality of kW
and skAT unless he/she compromises the authenticator.

For 1B and 2B authenticators, with the capabilities kW
and M [A], the attacker can break the confidentiality of
skAU . The attacker sends the request to the honest authen-
ticator with a malicious ASM and obtains the response con-
taining h, which can be decrypted by kW to get skAU . For 1R
authenticators, the attacker cannot break the confidentiality
of skAU unless he/she compromises the authenticator. For
2R authenticators, h is assigned to KeyID and sent to US as
part of the response. Therefore, as long as the attacker has
the capabilities S[W], C[M], or M [A], h will be intercepted
by these malicious entities. If the attacker can obtain kW at
the same time, h can be decrypted to obtain skAU .

For 1B and 2B authenticators, if tok is leaked, the attacker
can compute ak = hash(AppID || tok || CallerID || Person-
aID) and obtain ak. In addition, with the capability A[M],
the attacker can use a malicious authenticator to receive
the request from the honest ASM, which contains ak. For
1R and 2R authenticators, the attacker can compute ak =
hash(AppID) and obtain ak.

For any type of the authenticators with US providing Ap-
pID, with the adversarial capabilities S[W], C[M], or M [A],
the attacker can obtain CNTR by receiving the response with
these malicious entities. When US does not provide AppID,
since UC cannot verify UA, the attacker with capability
U [C] can obtain CNTR by a malicious UA receiving the
response from the honest UC.

6.1.2 Break Authentication in Registration Process
Row 8 in Table 7 shows that, with the capabilities W [S],
C[U], M [C], or A[M], the attacker can break the authenti-
cation goals in authenticator registration, thereby binding
the victim’s account with a malicious authenticator. The
resulting authenticator rebinding attack will be described
in detail in Section 6.2.1.

Auth. Type 1B 2B
login step-up step-up

C.

skAU kW∧A[M]
ak tok∨A[M]

CNTR
S[W]∨W [U]∨
(kW∧M[A])∨
(A[M]∧M[A])

S[W]∨
(kW∧M[A])∨
(A[M]∧M[A])

CNTR(non-a)
S[W]∨W [U]∨U[C]∨

(kW∧M[A])∨
(A[M]∧M[A])

S[W]∨U[C]∨
(kW∧M[A])∨
(A[M]∧M[A])

Tr W [S]∨C[U]∨M[C]∨A[M]

A. Basic
skAU∨

(A[M]∧kW)∨
(A[M]∧M[A])

(skAU∧W [S])∨
(skAU∧C[U])∨
(skAU∧M[C])∨
(skAU∧A[M])∨
(kW∧A[M])∨

(A[M]∧M[A]∧W [S])

Non-R -

(skAU∧W [S])∨
(skAU∧C[U])∨
(skAU∧M[C])∨
(skAU∧A[M])∨
(kW∧A[M])∨

(A[M]∧M[A]∧W [S])

TABLE 8
Adversarial capabilities to break confidentiality and authentication

properties in the UAF authentication process.

Auth. Type 1R 2R
login step-up step-up

C.

skAU × kW
ak

√

CNTR S[W]∨W [U]∨
C[M]∨M[A]

S[W]∨C[M]∨M[A]

CNTR
(non-a)

S[W]∨W [U]∨
U[C]∨C[M]∨M[A]

S[W]∨U[C]∨C[M]∨M[A]

Tr W [S]∨C[U]∨M[C]∨A[M]

A. Basic skAU∨C[M]∨M[A]

(skAU∧W [S])∨
(skAU∧C[U])∨
(skAU∧M[C])∨
(skAU∧A[M])∨
(W [S]∧C[M])∨
(W [S]∧M[A])

(skAU∧W [S])∨
(skAU∧C[U])∨
(skAU∧M[C])∨
(skAU∧A[M])∨
(kW∧W [S])∨
(kW∧C[U])∨
(kW∧M[C])∨
(kW∧A[M])∨
(W [S]∧C[M])∨
(W [S]∧M[A])

Non-R -

(skAU∧W [S])∨
(skAU∧C[U])∨
(skAU∧M[C])∨
(skAU∧A[M])∨
(W [S]∧C[M])∨
(W [S]∧M[A])

(skAU∧W [S])∨
(skAU∧C[U])∨
(skAU∧M[C])∨
(skAU∧A[M])∨
(kW∧W [S])∨
(kW∧C[U])∨
(kW∧M[C])∨
(kW∧A[M])∨
(W [S]∧C[M])∨
(W [S]∧M[A])

TABLE 9
Adversarial capabilities to break confidentiality and authentication

properties in the UAF authentication process.

6.1.3 Break Confidentiality in Authentication Process
Rows 2-6 in Table 8 show the adversarial capabilities re-
quired to break confidentiality in the UAF authentication
process. The attacker can break the confidentiality of skAU

and ak in the same ways as in the registration process.
For 1B authenticators when login and US providing

AppID, the attacker can break the confidentiality of CNTR
with the combinations of capabilities S[W], W [U], kW and
M [A], or A[M] and M [A]. The attacker can intercept CNTR
in the authentication responses with a malicious US or WS.
Besides, the attacker can use kW to construct a fake h′

containing a fake ak′, and send the request with h′ and
ak′ to the honest authenticator with a malicious ASM. The
authenticator extracts the ak′ from h′ for verification and is
unaware of the malicious ASM. The response with CNTR
will be returned to the malicious ASM. Moreover, with the
capabilitiesA[M] andM [A], the attacker can intercept h and
ak with a malicious authenticator, and then use a malicious
ASM to send the request and obtain CNTR.

Compared with 1B authenticators, for 1R authenticator
when login and US providing AppID, the attacker can di-
rectly use a malicious ASM to obtain CNTR since h is stored
inside the authenticator and ASM is not required to provide
valid h. Besides, since ASM does not verify UC’s CallerID,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

a malicious UC can obtain CNTR. Since we assume the WS
and UA have already established a trusted channel in step-
up authentication, the attackers do not have the capability
W [U] in these scenarios. In the scenario where the US does
not provide the AppID, the attacker with the capability U [C]
can also obtain CNTR through a malicious UA.

For any type of authenticators, the attacker with ca-
pabilities W [S], C[U], M [C], or A[M] can obtain Tr by
receiving the request containing Tr from honest entities. For
example, with the adversarial capability C[U], the attacker
can communicate with the honest UA through a malicious
UC and intercept Tr in the request.

6.1.4 Break Authentication in Authentication Process

For 1B authenticators when login, once skAU is leaked, the
attacker can impersonate a user by forging the signature.
With adversarial capabilities kW and A[M], the attacker
can intercept h via the malicious authenticator and decrypt
h to obtain the skAU . As for the cases with adversarial
capabilities A[M] and M [A], the attacker can obtain valid h
and ak with a malicious authenticator and forge an authenti-
cation request to start the honest authenticator. The resulting
parallel session attack will be described in Section 6.2.2.

For 1B and 2B authenticators when step-up authentica-
tion, since a trusted channel has already been established
between UA and WS, the attacker cannot directly commu-
nicate with WS using a malicious UA, the attacker cannot
break the authentication goals by only compromising the
skAU . However, with the capabilities W [S], C[U], M [C], or
A[M] the attacker can forward valid responses via these
malicious entities. With the capabilities kW and A[M],
the attacker can obtain h via the malicious authenticator
and obtain skAU by decrypting h with kW , the forged
responses can also be forwarded by the malicious authen-
ticator. The attacker can break the authentication goal or
non-repudiation goal with the capabilities A[M], M [A], and
W [S], and the resulting transaction tampering attack will be
detailed in Section 6.2.5.

For 1R authenticators when login, with the capabilities
C[M] or M [A], the attacker can implement parallel session
attacks, which we discuss in Section 6.2.2. With the capabil-
ities kW and A[M], the attacker receives h via the malicious
authenticator and obtains skAU by decrypting h with kW .

For 1R authenticators when step-up authentication, if
skAU is leaked, the attacker can forge a valid signature. With
the adversarial capabilities W [S], C[U], M [C] or A[M],
the attacker can send forged responses to break the au-
thentication properties. Similar to 1B and 2B authenticators
when step-up authentication, with the capabilitiesW [S] and
C[M], the attacker can use malicious WS to initiate a step-
up authentication with US, and use a malicious UC to send
requests and obtain the valid signature to bypass the au-
thentication. This is a type of transaction tampering attacks,
which will be detailed in Section 6.2.5. With capabilities
W [S] and M [A], the attacker can perform a similar attack,
except that a malicious ASM is used to send the request.

For 2R authenticators when step-up authentication,
which is different from using the 1R authenticator, the
KeyID will be assigned to h and forwarded between en-
tities. Therefore, based on the combinations of adversarial

capabilities in 1R authenticator scenarios, with the capabil-
ities W [S], C[U], M [C], or A[M] the attacker can also use
kW to decrypt the KeyID and obtain skAU .

6.2 Practical Attacks and Case Studies

6.2.1 Authenticator Rebinding Attack
When the deployment of the protocol does not meet the
assumptions ¬W [S], ¬C[U], ¬M [C], and ¬A[M], or the
attacker has the capabilities W [S], C[U], M [C], or A[M],
the injective agreement on UName, AAID, KeyID, AppID
between US and the authenticator in the registration process
cannot be satisfied, rebinding attacks can be performed. To
do so, the attacker needs to convince the user to install a
malicious UC, ASM, or authenticator into his/her device.

The attack has the following steps: i) the victim uses
UA to log in to RP in the traditional way and initiate the
UAF registration; ii) UA sends the registration request to
the malicious UC. Or UC sends the request to the malicious
ASM. Or, ASM sends the request to the malicious authen-
ticator; iii) the malicious UC redirects the request to the
attacker’s device; iv) the attacker uses his/her authenticator
to continue the UAF operations with the redirected request;
v) the attacker sends the response message to the malicious
UC on the victim’s device and forwards it to US; vi) the
attacker completes the UAF registration on behalf of the
victim and successfully rebinds the victim’s identity to the
attacker’s authenticator. As a result, the attacker can bypass
the authentication of US and impersonate the victim.

To verify the feasibility of this attack on real-world apps,
we compiled a dataset of 1,856 Android payment apps and
identified 42 that use the UAF protocol. These apps can be
divided into two categories depending on the authenticator
type. 8 out of the 42 apps have a hardware-based authen-
ticator, e.g., China Mobile Pay, whereas the other 34 use a
software-based authenticator, e.g., Jingdong Finance.

We successfully carried out authenticator rebinding at-
tacks on China Mobile Pay and Jingdong Finance. The
other 40 apps may also be vulnerable to these attacks. We
chose China Mobile Pay and Jingdong Finance because of
their popularity. As of October 2020, China Mobile Pay
had 214,424,508 downloads in total, and Jingdong Finance
had 1,043,164,317 downloads in total. In March 2020, China
Mobile Pay had monthly active users of 3,838,000, and
Jingdong Finance had monthly active users of 23,116,000.

We reported the vulnerability of China Mobile Pay to
China National Vulnerability Database of Information Secu-
rity (CNNVD) on May 25, 2020, resulting in a medium-risk
vulnerability ID (CNNVD-202005-1219) on July 31, 2020. We
disclosed the vulnerability on Jingdong Finance to JD Secu-
rity Response Center on December 12, 2018, who replied
they would ignore the vulnerability on December 19, 2018.

China Mobile Pay (package name: com.cmcc.hebao,
version: 7.6.70, MD5: 384c99ecd3ac0ea0f805959da2b76608)
in Android deploys the UAF protocol by calling a third-
party UC and uses the hardware authenticator. However,
the application (UA) does not authenticate the entity it calls,
which means it may call any UC, including a malicious one
(lacking the assumption of ¬C[U]). Therefore, once the user
selects the malicious UC to call, the attacker can carry out
the authenticator rebinding attack.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

Similar attacks can be performed when the attacker
compromises UA, UC, ASM, or authenticator, but this re-
quires higher capabilities of the attacker. The mis-binding
attack [37] is similar to the authenticator rebinding attack,
except that the former requires the attacker to corrupt
UC and ASM. Cloned authenticator attack [48] needs the
attacker to evade the security mechanism of the envi-
ronment of the authenticator, get information about the
user’s authenticator, and deploy a malicious cloned au-
thenticator. We performed the attack on Jingdong Fi-
nance (package name: com.jd.jrapp, version: 5.0.1, MD5:
d56a8c05ab61194251b00b873fa3d4c4).

6.2.2 Parallel Session Attack
Parallel session attacks can be performed during the authen-
tication process when the deployment of the protocol does
not satisfy the assumptions ¬A[M] and ¬M [A] (the attacker
has the adversarial capabilities A[M] or M [A]) for the 1B
login case or does not satisfy the assumptions ¬C[M] or
¬M [A] (the attacker has the adversarial capabilities C[M]
and M [A]) for the 1R login case. In other words, to carry out
the attack in the 1B login case, there should be a malicious
authenticator and a malicious ASM on the victim’s device,
whereas to perform the attack in the 1R login case, there
should be a malicious UC or a malicious ASM on the
victim’s device. A similar attack was proposed [37], which
requires the compromise of the legitimate UC and ASM.

For 1B authenticators, the attack can be carried out in 2
steps. In step 1, i) the victim tries to log in to RP; ii) the
legitimate ASM forwards the request, which contains ak
and h, to the malicious authenticator. Since the malicious
authenticator does not have skAU and CNTR, it cannot
generate a valid authentication response. In step 2: i) the
victim tries to log in to RP again; ii) the attacker sends a
login request to RP with the victim’s account at the same
time and gets Chlg; iii) the malicious ASM sends the request
message with the valid ak, h and the attacker’s Chlg to the
legitimate authenticator; iv) unbeknownst to the victim, the
victim verifies the fingerprint, and the authenticator signs
the message and generates the authentication response.

Similarly, for 1R authenticators, the attack can be carried
out in 2 steps. In step 1, the attacker computes ak =
hash(AppID). In step 2: i) the victim tries to log in to RP;
ii) the attacker sends a login request to RP with the victim’s
account at the same time and gets Chlg; iii) the malicious
ASM sends the request message with the valid ak and the
attacker’s Chlg to the legitimate authenticator, or the mali-
cious UC sends the request message with the attacker’s Chlg
to the legitimate ASM; v) unbeknownst to the victim, the
victim verifies the fingerprint, and the authenticator signs
the message and generates the authentication response. Sim-
ilarly, the attacker can impersonate the user and finish the
step-up authentication, such as a transaction confirmation.

6.2.3 Privacy Disclosure Attack
When the deployment of the protocol does not satisfy the
assumptions ¬C[U] or ¬C[M] (with the adversarial capa-
bilities C[U] and C[M]), some of the user’s personal data
will be leaked. Assuming there is a malicious UC and using
the 1B authenticator: i) the victim tries to log in to RP or
make a transaction with RP; ii) the malicious UC receives the

authentication request; iii) the attacker can confirm whether
the victim is logging in or making a transaction depending
on whether Tr is included in the request.

For 1R and 2R authenticators, ASM does not verify
UC’s CallerID: i) the victim tries to log in to RP or make
a transaction with RP; ii) the malicious UC receives the
authentication request, which may contain Tr; iii) the mali-
cious UC sends the authentication request to the legitimate
ASM, and the legitimate authenticator signs and performs
other operations; iv) the malicious UC gets the authenticator
response, which contains CNTR, signature, etc.; v) malicious
UC forwards authentication response, the authentication
succeeds. The attacker can use CNTR to compute how many
times the victim tries to log in or make transactions. The
attacker can use the signature for chosen-ciphertext attacks.

As for the cases where US does not provide AppID,
the attacker can intercept the CNTR with a malicious UA.
Since the AppID is not used in registration or authentication
requests, the UC can not obtain the list of trusted FacetIDs
with AppID, and thus can not verify whether the UA in this
session is certified by the US. If a malicious UA controlled by
the attacker participates in this session, the CNTR returned
by the authenticator in the responses will be leaked.

6.2.4 Denial of Service Attack
The attacker can carry out a DoS attack when the deploy-
ment of the protocol does not satisfy the assumptions ¬C[U]
or ¬M [C] or ¬A[M] (with the adversarial capabilities C[U],
M [C], and A[M]). For all 4 types of authenticators, if there
is a malicious UC, ASM, or authenticator, the attacker can
discard the authentication request, and the user cannot
finish the authentication.

For 1R and 2R authenticators, if there is a malicious
UC or ASM, the attacker can use the following steps to
permanently disable the authenticator by making CNTR
of the legitimate authenticator out of sync with US: i) the
victim tries to log in to RP or make a transaction with RP; ii)
the malicious UC receives the authentication request from
legitimate UA, forwards the request to the authenticator
via ASM, and the authenticator signs. The authenticator’s
CNTR increments accordingly; iii) when the authentication
response is returned to the malicious UC, it intercepts the
request and sends a fail message to UA; iv) RP gets the mes-
sage, so CNTR does not increment; v) the attacker repeats
this attack many times to cause CNTR out of sync.

6.2.5 Transaction Tampering Attack
A corrupted WS can carry out the transaction tampering
attack when the deployment of the protocol does not satisfy
the assumptions ¬W [S], ¬M [A], and ¬A[M] (with the
adversarial capabilities W [S], M [A], or A[M]) for 1B and 2B
authenticators in step-up authentication. The attacker can
impersonate the user to finish a transaction confirmation
with any Tr without the user knowing.

The transaction tampering attack can be carried out in
two steps. In step 1, i) the victim logs in to RP; ii) the
victim initiates a step-up authentication with RP; iii) the
legitimate ASM forwards the request, which contains ak
and h, to the malicious authenticator. In step 2: i) the victim
initiates a step-up authentication with RP (e.g., transaction
confirmation); ii) the malicious WS initiates a transaction

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

confirmation with the honest US with any Tr′; iii) the
malicious ASM sends the request with Tr′, h, and ak to
the trusted authenticator, which verifies the user and signs
the message; iv) US successfully authenticates the user and
finishes the transaction confirmation with Tr’.

7 RECOMMENDATIONS

We present several concrete recommendations to enhance
the security of the UAF protocol.

7.1 Explicit Requirements

The security goals in the UAF security reference are informal
and fragmentary: i) SG-1 is ambiguous in that no clear
definition of ‘strong authentication’ is provided; ii) except
SG-1, all other authentication properties were presented in
the format of resilience to some known attacks, which do not
evolve as new attacks are discovered; iii) only the user con-
sent goal is explicitly presented for the registration process,
which has several implicit goals (discussed in Section 3.2).

We recommend presenting security requirements and
goals more explicitly and actively. For example, the speci-
fications can use formal expressions to describe the security
properties as shown in Section 3.2. The analysis results show
that the registration process has many issues, so the speci-
fications should improve the description of authentication
properties for the registration process.

7.2 Modifying the KHAccessToken Mechanism

The analysis results show that the KHAccessToken mech-
anism is futile to prevent the malicious ASMs: i) the con-
fidentiality of ak cannot be held when using 1R and 2R
authenticators; ii) the confidentiality of ak cannot be held
when there is a malicious authenticator. The authenticator’s
trust in ASM is based on the Trust On First Use (TOFU)
concept [30], which means it assumes there is no malicious
ASM in the registration process, but there can be malicious
ASMs in the authentication process. However, it is equally
difficult for the attacker to trick the victim into installing
a malicious ASM in the registration process or the au-
thentication process. So this mechanism is futile to prevent
malicious ASMs. Furthermore, even if ASM is trusted in the
registration process, the attacker can still get ak from ASM
by receiving authentication requests from malicious authen-
ticators. We recommend: i) there should be requirements for
mechanisms to guarantee the security of the running envi-
ronment of ASM and the authenticator. And, vendors must
ensure the deployment of the protocol satisfies ¬A[M] and
¬M [A], e.g., running ASM and the authenticator in a trusted
execution environment; ii) the KHAccessToken mechanism
for 1R and 2R authenticators should be improved to prevent
malicious ASM from communicating with the authenticator.
For example, same as bound authenticators, ak should
include tok. To this end, the authenticator can maintain a
trusted list of ASMs; iii) there should be a mechanism for
the authenticator to authenticate ASM. For example, in 1B
and 2B authenticators, vendors can provide a shared key
in both ASM and the authenticator, so the communication
between ASM and the authenticator can be encrypted.

7.3 Adding Authentication Mechanism between UAF
Entities
UAF protocol has multiple participating entities and lacks
inter-entity authentication. The attacker can use malicious
entities to participate in the protocol and break the secu-
rity properties. Therefore, the UAF protocol should add
authentication mechanisms between UAF entities. First, WS
should authenticate US. When RP does not deploy US itself,
an honest WS may communicate with the malicious US.
But the UAF standard does not provide any authentication
mechanism between WS and US. Once the third-party US is
malicious, the attacker can control any user’s account. Then,
ASM should authenticate UC. If the deployment of the pro-
tocol does not satisfy ¬C[M], some security properties will
not hold. Although Section 6.2 of ASM specification states
that ASM must implement the access control of CallerID [29],
it does not specify how to verify CallerID and leave the
implementation of the security mechanisms to the vendors.
We emphasize the importance of this issue and suggest
having a standard ASM access control mechanism for Cal-
lerID in the specification. For example, ASM can maintain
a trusted CallerID list. Only UCs with a valid CallerID can
communicate with ASM. Last, UA should authenticate UC.
The protocol does not require UA to authenticate UC. As a
result, UA or the user may invoke a malicious UC installed
on the device. We recommend the specifications require UA
to authenticate UC. For example, UA can use the same
mechanism as ASM does to authenticate UC.

8 RELATED WORK

Hu et al. manually abstracted the UAF protocol and pre-
sented 3 attacks, including mis-binding attack, parallel ses-
sion attack, and multi-user attack [37]. Leoutsarakos man-
ually found 15 defects of the UAF protocol, which were
not formally verified [43]. Panos et al. presented a manual
and informal analysis of the UAF protocol with several
discovered vulnerabilities and attacks [48]. Loutfi et al.
gave a set of trust requirements of the FIDO UAF protocol
which included the trust requirements in FIDO consortium,
in service providers, in a hardware manufacturer, a local
device computing platform, and the end-user [44]. Zhang
et al. presented an attack on FIDO transaction confirmation
and proposed a secure display mechanism for mobile de-
vices [57]. Jacomme et al. found that the U2F protocol can
guarantee authentication in many threat scenarios, such as
with phishing sites, but cannot achieve authentication goals
in the presence of malware in the user environment [39].
Although the paper analyzed different scenarios, no formal
model was given. Meanwhile, the model description of the
U2F protocol was simple, and it did not consider differ-
ent security assumptions and optional protocol operations.
Chang et al. found that the U2F protocol could leak two
fixed keys (attestation key and device secret key) through
a side-channel attack. They recommended a modification of
the U2F protocol to minimize the effect of this attack and
presented a new variant of the U2F protocol to provide a
stronger security guarantee. Similarly, they introduced how
to perform side-channel attacks on the UAF protocol [15].
Pereira et al. formally analyzed the authentication proper-
ties of the U2F protocol [49]. They analyzed two types of

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 17

U2F clients with and without AppID verification and found
that the U2F protocol could not satisfy authentication with-
out AppID verification. However, the protocol model was
oversimplified. Different from previous work, we provide
a faithful formalization of the UAF protocol and use the
formal method to analyze the UAF protocol.

9 CONCLUSION

In this paper, we formalized the security assumptions and
goals of the UAF protocol, provided a formal model of the
protocol, and used ProVerif to analyze the protocol under
different scenarios. Our analysis identified the minimal se-
curity assumptions required for each of the security goals
of the UAF protocol. By summarizing and analyzing the re-
sults given by ProVerif, we presented the defects of the pro-
tocol and some attacks. We confirmed previously discovered
vulnerabilities in an automated way and disclosed several
new attacks. We offered several concrete recommendations
to fix the identified problems and weaknesses in UAF.

ACKNOWLEDGMENT

The research of Beijing University and Posts and Telecom-
munications is partially funded by the Joint funds for Re-
gional Innovation and Development of the National Natural
Science Foundation of China (No. U21A20449) and the
National Natural Science Foundation of China (Grant No.
61941105).

REFERENCES

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta et al.,
“Imperfect forward secrecy: How diffie-hellman fails in practice,”
in ACM SIGSAC Conference on Computer and Communications Secu-
rity. ACM, 2015.

[2] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuéllar, P. H. Drielsma, P.-C. Héam, O. Kouchnarenko, J. Manto-
vani et al., “The avispa tool for the automated validation of internet
security protocols and applications,” in International conference on
computer aided verification. Springer, 2005.

[3] A. Armando, R. Carbone, and L. Compagna, “Satmc: a sat-based
model checker for security-critical systems,” in International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2014.

[4] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and
V. Stettler, “A formal analysis of 5g authentication,” in ACM
SIGSAC Conference on Computer and Communications Security, 2018.

[5] D. Basin, S. Mödersheim, and L. Vigano, “Ofmc: A symbolic model
checker for security protocols,” International Journal of Information
Security, vol. 4, no. 3, 2005.

[6] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A
messy state of the union: Taming the composite state machines of
tls,” in IEEE Symposium on Security and Privacy. IEEE, 2015.

[7] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the tls 1.3 standard candidate,” in
IEEE Symposium on Security and Privacy (SP). IEEE, 2017.

[8] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, “Crypto-
graphically verified implementations for tls,” in ACM conference
on Computer and communications security. ACM, 2008.

[9] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and proverif,” vol. 1, no. 1-2, 2016.

[10] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, ProVerif 2.00:
Automatic Cryptographic Protocol Verifier, User Manual and Tutorial,
May 2018, http://prosecco.gforge.inria.fr/personal/bblanche/
proverif/manual.pdf.

[11] Y. Boichut, N. Kosmatov, and L. Vigneron, “Validation of prouvé
protocols using the automatic tool ta4sp,” in Taiwanese-French
Conference on Information Technology (TFIT 2006), 2006.

[12] J. Bonneau, “The science of guessing: analyzing an anonymized
corpus of 70 million passwords,” in IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 538–552.

[13] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The
quest to replace passwords: A framework for comparative eval-
uation of web authentication schemes,” in IEEE Symposium on
Security and Privacy. IEEE, 2012, pp. 553–567.

[14] D. Chang, X. Chu, and G. Wei, “Analysis of the security-enhanced
vtpm migration protocol based on proverif,” in International Con-
ference on Computational and Information Sciences. IEEE, 2013.

[15] D. Chang, S. Mishra, S. K. Sanadhya, and A. P. Singh, “On mak-
ing u2f protocol leakage-resilient via re-keying.” IACR Cryptology
ePrint Archive, vol. 2017, p. 721, 2017.

[16] C. Cremers, “Key exchange in ipsec revisited: Formal analysis of
ikev1 and ikev2,” in European Symposium on Research in Computer
Security. Springer, 2011.

[17] C. J. Cremers, “Unbounded verification, falsification, and charac-
terization of security protocols by pattern refinement,” in ACM
conference on Computer and communications security. ACM, 2008.

[18] S. Delaune, S. Kremer, and M. Ryan, “Verifying privacy-type prop-
erties of electronic voting protocols,” Journal of Computer Security,
vol. 17, no. 4, 2009.

[19] N. Dong, H. Jonker, and J. Pang, “Formal analysis of an e-health
protocol,” arXiv preprint arXiv:1808.08403, 2018.

[20] S. Escobar, C. Meadows, and J. Meseguer, “A rewriting-based
inference system for the nrl protocol analyzer and its meta-logical
properties,” Theoretical Computer Science, vol. 367, no. 1-2, 2006.

[21] H. Feng, H. Li, X. Pan, and Z. Zhao, “A formal analysis of the
fido uaf protocol,” in Network And Distributed System Security
Symposium, 2021.

[22] FIDO Alliance, “Android Now FIDO2 Certified, Accelerating
Global Migration Beyond Passwords,” https://fidoalliance.org/
android-now-fido2-certified-accelerating-global-migration-
beyond-passwords/, 2017.

[23] FIDO Alliance, “Client to authenticator protocol (ctap),”
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-
client-to-authenticator-protocol-v2.0-ps-20190130.html, 2017.

[24] FIDO Alliance, “FIDO AppID and Facet Specification,”
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/
fido-appid-and-facets-v1.1-ps-20170202.html, 2017.

[25] FIDO Alliance, “FIDO Members,” https://fidoalliance.org/
members/, 2017.

[26] FIDO Alliance, “FIDO Security Reference,” https:
//fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-
security-ref-v1.1-ps-20170202.html, 2017.

[27] FIDO Alliance, “FIDO UAF Architectural Overview,”
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/
fido-uaf-overview-v1.1-ps-20170202.html, 2017.

[28] FIDO Alliance, “FIDO UAF Authenticator Commands,”
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/
fido-uaf-authnr-cmds-v1.1-ps-20170202.html, 2017.

[29] FIDO Alliance, “FIDO UAF Authenticator-Specific Module
API,” https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/
fido-uaf-asm-api-v1.1-ps-20170202.html, 2017.

[30] FIDO Alliance, “FIDO UAF Protocol Specification,”
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/
fido-uaf-protocol-v1.1-ps-20170202.html, 2017.

[31] FIDO Alliance, “FIDO Authenticator Allowed Cryptography
List,” https://fidoalliance.org/specs/fido-security-requirements-
v1.2-2018/fido-authenticator-allowed-cryptography-list-v1.0-
wd-20180629.html, 2018.

[32] FIDO Alliance, “FIDO Authenticator Allowed Restricted Oper-
ating Environments List,” https://fidoalliance.org/specs/fido-
security-requirements-v1.2-2018/fido-authenticator-allowed-
restricted-operating-environments-list-v1.0-wd-20180629.html,
2018.

[33] FIDO Alliance, “FIDO Authenticator Metadata Requirements,”
https://fidoalliance.org/specs/fido-security-requirements-
v1.2-2018/fido-authenticator-metadata-requirements-v1.0-wd-
20180629.html, 2018.

[34] FIDO Alliance, “FIDO Authenticator Security Requirements,”
https://fidoalliance.org/specs/fido-security-requirements/fido-
authenticator-security-requirements-v1.3-fd-20180905.html, 2018.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 18

[35] FIDO Alliance, “FIDO Certified Products,” https:
//fidoalliance.org/certification/fido-certified-products/, 2019.

[36] A. D. Gordon and A. Jeffrey, “Types and effects for asymmetric
cryptographic protocols,” Journal of Computer Security, vol. 12, no.
3-4, 2004.

[37] K. Hu and Z. Zhang, “Security analysis of an attractive online au-
thentication standard: Fido uaf protocol,” China Communications,
vol. 13, no. 12, 2016.

[38] S. Islam, “Security analysis of lmap using avispa,” International
journal of security and networks, vol. 9, no. 1, 2014.

[39] C. Jacomme and S. Kremer, “An extensive formal analysis of
multi-factor authentication protocols,” in IEEE Computer Security
Foundations Symposium (CSF). IEEE, 2018.

[40] N. Karapanos and S. Capkun, “On the effective prevention of tls
man-in-the-middle attacks in web applications,” in Usenix Security
Symposium, 2014.

[41] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Annual international cryptology conference. Springer, 1999.

[42] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems,” in Annual International
Cryptology Conference. Springer, 1996.

[43] N. Leoutsarakos, “What’s wrong with fido?” http:
//zeropasswords.com/pdfs/WHATisWRONG\ FIDO.pdf,
2011.

[44] I. Loutfi and A. Jøsang, “Fido trust requirements,” in Nordic
Conference on Secure IT Systems. Springer, 2015.

[45] G. Lowe, “Breaking and fixing the needham-schroeder public-
key protocol using fdr,” in International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
1996.

[46] G. Lowe, “A hierarchy of authentication specifications,” in Com-
puter Security Foundations Workshop. IEEE, 1997.

[47] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin
prover for the symbolic analysis of security protocols,” in Inter-
national Conference on Computer Aided Verification. Springer, 2013.

[48] C. Panos, S. Malliaros, C. Ntantogian, A. Panou, and C. Xenakis,
“A security evaluation of fido’s uaf protocol in mobile and em-
bedded devices,” in International Tyrrhenian Workshop on Digital
Communication. Springer, 2017.

[49] O. Pereira, F. Rochet, and C. Wiedling, “Formal analysis of the fido
1.x protocol,” in International Symposium on Foundations & Practice
of Security, 2017.

[50] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analy-
sis of diffie-hellman protocols and advanced security properties,”
in IEEE Computer Security Foundations Symposium. IEEE, 2012.

[51] J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and K. Butler,
“Sok: ”plug & pray” today – understanding usb insecurity in
versions 1 through c,” in IEEE Symposium on Security & Privacy,
2018.

[52] M. Turuani, “The cl-atse protocol analyser,” in International Confer-
ence on Rewriting Techniques and Applications. Springer, 2006.

[53] W3C, “Web authentication: An api for accessing public key cre-
dentials level 1,” https://www.w3.org/TR/webauthn/, 2017.

[54] C. Weidenbach, “Towards an automatic analysis of security pro-
tocols in first-order logic,” in International Conference on Automated
Deduction. Springer, 1999.

[55] Q. Xie, N. Dong, X. Tan, D. S. Wong, and G. Wang, “Improve-
ment of a three-party password-based key exchange protocol with
formal verification,” Information Technology and Control, 2013.

[56] Y. Zhang, F. Monrose, and M. Reiter, “The security of modern
password expiration: An algorithmic framework and empirical
analysis,” in ACM conference on Computer and communications se-
curity. ACM, 2010, pp. 176–186.

[57] Y. Zhang, X. Wang, Z. Zhao, and H. Li, “Secure display for
fido transaction confirmation,” in ACM Conference on Data and
Application Security and Privacy, 2018.

[58] S. Ziauddin and B. Martin, “Formal analysis of iso/iec 9798-2
authentication standard using avispa,” in Asia joint conference on
information security. IEEE, 2013.

Haonan Feng received the B.S. degree in Infor-
mation Security from Beijing University of Posts
and Telecommunications (BUPT) in 2018 and
the M.S. degree in Computer Technology from
Beijing University of Posts and Telecommuni-
cations (BUPT) in 2021. His research interest
lies in analyzing security protocol using formal
methods. He is a recipient of the special prize
of the 4th National Cryptography Competition,
China. He is now a security engineer at the Ant
Financial Services Group Co., Ltd.

Jingjing Guan received B.S. degree in Infor-
mation Security from Beijing University of Posts
and Telecommunications (BUPT) in 2020. She is
currently working toward the M.S. degree in Cy-
berspace Security in Beijing University of Posts
and Telecommunications (BUPT). Her research
interest includes formal analysis of security pro-
tocols.

Hui Li got her B.S. in Computer Application
Technology in 1995 from Jilin University and
Ph.D. in Cryptography in 2005 from Beijing
University of Posts and Telecommunications
(BUPT), China. Now, she is working at the
School of Cyberspace Security in BUPT as an
associate professor. Her current research inter-
ests include security protocol, information secu-
rity and mobile security.

Xuesong Pan received the B.S. degree in Infor-
mation Security from Beijing University of Posts
and Telecommunications (BUPT) in 2018 and
the M.S. degree in Cyberspace Security from
Beijing University of Posts and Telecommunica-
tions (BUPT) in 2021. His main research inter-
ests include protocol security and system secu-
rity. He is now a software engineer at Huawei
Technologies Co., Ltd.

Ziming Zhao is an Assistant Professor at the
Department of Computer Science and Engineer-
ing (CSE) and the director of the CyberspACe
securiTy and forensIcs lab (CactiLab), University
at Buffalo. His current research interests include
system and software security, trusted execution
environment, formal methods for security, and
usable security. His research has been sup-
ported by the U.S. National Science Foundation
(NSF), the U.S. Department of Defense, the U.S.
Air Force Office of Scientific Research, and the

U.S. National Centers of Academic Excellence in Cybersecurity. He is
a recipient of NSF CRII Award. His research outcomes have appeared
in IEEE S&P, USENIX Security, ACM CCS, NDSS, ACM MobiSys, ACM
TISSEC/TOPS, IEEE TDSC, IEEE TIFS, etc. He is also a recipient of
best paper awards from USENIX Security 2019, ACM AsiaCCS 2022,
and ACM CODASPY 2014. He received the Ph.D. degree in Computer
Science from Arizona State University, Tempe, AZ, in 2014.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3217259

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 06,2023 at 14:54:09 UTC from IEEE Xplore. Restrictions apply.

