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Abstract— Transfer learning, successful in knowledge trans-
lation across related tasks, faces a substantial privacy threat
from membership inference attacks (MIAs). These attacks,
despite posing significant risk to ML model’s training data,
remain limited-explored in transfer learning. The interaction
between teacher and student models in transfer learning has not
been thoroughly explored in MIAs, potentially resulting in an
under-examined aspect of privacy vulnerabilities within transfer
learning. In this paper, we propose a new MIA vector against
transfer learning, to determine whether a specific data point was
used to train the teacher model while only accessing the student
model in a white-box setting. Our method delves into the intricate
relationship between teacher and student models, analyzing the
discrepancies in hidden layer representations between the student
model and its shadow counterpart. These identified differences
are then adeptly utilized to refine the shadow model’s training
process and to inform membership inference decisions effectively.
Our method, evaluated across four datasets in diverse transfer
learning tasks, reveals that even when an attacker only has access
to the student model, the teacher model’s training data remains
susceptible to MIAs. We believe our work unveils the unexplored
risk of membership inference in transfer learning.

Index Terms— Membership inference attack, transfer learning.

I. INTRODUCTION

TRANSFER learning has witnessed a marked increase
in adoption recently, primarily due to its proficiency

in leveraging knowledge from one domain to enhance
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performance in another, closely related domain [1], [2]. This
method enables the application of complex models developed
with extensive data, such as those by large corporations or
hospitals, to be adapted for use in smaller entities like startups
or smaller hospitals, thereby bypassing the need for substantial
labeled data. However, this widespread adoption also raises
concerns regarding the potential for privacy breaches, par-
ticularly through MIAs [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], as sensitive information,
including biometric and healthcare data, is increasingly shared
among different organizations [17]. Consequently, while trans-
fer learning offers numerous advantages, such as customizing
models to specific tasks without extensive data, it also necessi-
tates stringent scrutiny to prevent potential privacy violations.

In MIAs, adversaries exploit access to a model’s parameters
or its output to ascertain if a specific data point was used
during the model’s training [3], [7]. They typically achieve
this by analyzing how the model behaves with a given data
point compared to others, potentially identifying it as part
of the training set based on output discrepancies or changes
when the point is included or excluded from training data.
The rising trend of data sharing, particularly sensitive personal
information, among organizations underscores the critical need
for stringent privacy measures, guided by regulations such
as the General Data Protection Regulation (GDPR) [18] and
the California Consumer Privacy Act (CCPA) [19]. These
regulations are pivotal in upholding data privacy, especially
within transfer learning where knowledge transfer occurs
across varied organizational echelons [20], [21], [22], [23],
[24], [25], [26].

In transfer learning, research efforts like those from
Zou et al. and Hidano et al. [27], [28] have focused on black-
box MIAs. Zou et al. [27] were pioneers in this field, applying
shadow training to analyze MIAs against the target model,
albeit without extending this analysis to the teacher model.
Hidano et al. [28] advanced this research by introducing trans-
fer shadow training, enhancing attack accuracy by exploiting
the transferred model’s parameters. However, neither study
fully explored the critical relationship between teacher and
student models in a white-box way, a key aspect for a
comprehensive understanding of MIAs in transfer learning.
Recognizing and exploring this relationship is crucial for a
deeper and more accurate assessment of privacy risks in this
domain. Thus, we are motivated by the question of how a
white-box attack framework, attentively analyzing the complex
interactions between teacher and student models, can yield a
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more comprehensive and nuanced understanding of privacy
risks in transfer learning environments.

A. Our Approach

We propose a new MIA vector in transfer learning to
determine if a data point was part of the teacher model’s
training by analyzing the student model. In our white-box
scenario, the attacker has full access to the student model’s
internal architecture and feature representations. Although the
attacker does not have direct access to the teacher model or its
data, they use a shadow dataset similar to the student model’s
training data, classifying it into member and non-member
groups to train a shadow student model [3], [7], [29], [30]. The
attacker then queries the actual and shadow student models
using the shadow dataset to collect feature representations and
analyze variations.

The attacker establishes adaptive thresholds based on these
feature variations to infer membership. This strategic method
exploits the differences between the actual and shadow student
models’ feature representations, revealing patterns indicative
of membership in the teacher model’s training data. By using
unique data transformation discrepancies in transfer learning,
our approach significantly enhances the efficacy of MIAs. This
highlights privacy risks in transfer learning, especially given
the increasing reliance on private or semi-private datasets,
emphasizing the need for stronger privacy safeguards.

Significantly different from prior MIA researches [3], [13],
[27], [28], [31], [32], [33], we unveil a novel white-box
MIA vector specifically tailored for transfer learning contexts,
addressing a gap not extensively covered in existing literature.
This attack distinctively analyzes differential representations
between teacher and student models, a step beyond the tra-
ditional focus on direct feature comparisons, thus providing
a nuanced understanding of transfer-induced vulnerabilities.
We also innovate with a trinary decision framework, which
refines the attack precision by distinguishing among various
membership statuses more accurately. Our investigation into
the complex interplay between teacher and student models
uncovers subtle yet critical insights into their shared vul-
nerabilities, advocating for enhanced privacy measures in
transfer learning. Through a meticulous comparative analysis
using shadow models, our work underscores the need for a
reevaluated defense strategy, positioning our contributions as
a pivotal reference for future research in securing transfer
learning mechanisms.

B. Contribution

We summarize our contribution as follows:
• We unveil a new MIA vector in transfer learning, which

is the first white-box attack against transfer learning to the
best of our knowledge. It employs differential representation
analysis and a ternary decision framework to elucidate
privacy vulnerabilities in teacher-student model interactions.

• To elucidate the interplay between teacher and student mod-
els, we present an adaptive threshold selection mechanism,
enabling the extraction of representation differences between
the student model and corresponding shadow model (§IV).

Fig. 1. Illustration of transfer learning.

• Our approach is rigorously tested across diverse settings,
four datasets, and different transfer learning tasks, compar-
ing it against current state-of-the-art methods. The results
indicate that our proposed attack achieves a high attack
accuracy, and more effectively exposes the teacher model’s
membership privacy then previous black-box MIAs (§VI).

• We systematically consider other two possible attacks under
transfer learning, including inferring the student membership
using the knowledge of the student model, and inferring
the teacher membership using the knowledge of the teacher
model. We also evaluate the performance of these attacks
cases and compare them with our attack cases (§V).

II. BACKGROUND

This section briefs transfer learning and MIA.

A. Transfer Learning

Transfer learning leverages a pre-trained teacher model’s
architectural framework and layer weights to enhance a student
model’s efficacy on related tasks [34], [35], [36]. Its proven
effectiveness is particularly beneficial for entities with limited
data or computational power, enabling the development of
precise models with optimized resource utilization for task-
specific applications.

As illustrated in Figure 1, transfer learning begins with the
student model adopting the teacher model’s feature extraction
layers and appending a new dense layer to fit its specific
task. In subsequent training phases, the student model, using
a smaller dataset, retains fixed weights in the initial K feature
extraction layers, while adapting the weights in the remaining
layers. These extraction layers are crucial for recognizing
input data patterns through convolution and pooling, while the
dense layers synthesize this information for specific outputs or
classifications. Maintaining the pre-trained layers unchanged
capitalizes on their learned features, optimizing training effi-
ciency and reducing resource demands. The extent of layer
freezing, determined by the similarity between the teacher’s
and student’s tasks, varies from minimal adjustments for
closely related tasks to more extensive tuning for distinct ones,
ensuring the student model’s relevancy and performance.

B. Membership Inference Attack

MIA aims to ascertain if a deep learning model, often
involving complex nonlinear functions and numerous lay-
ers, was trained utilizing a given data record [3], [37].
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This process of inquiry requires the attacker to interact with
the model, supplying the given data point and observing the
output to assess the membership status of the provided data.
This assessment, a key facet of ML privacy research, can be
formally represented as in Eq. 1. The primary attack task
is to construct a MIA model A that operates against target
model M, with the aim to predict the membership status of a
given data point xtarget .

A(xtarget,M, �)

=

{
1, if xtarget is in the training data of M
0, otherwise

(1)

The target model M, a pre-trained and possibly heavily
parametrized model, and the prior knowledge �, often encap-
sulating assumptions regarding the data distribution or the
target model’s characteristics, can be accessed by the attacker.
The attack model A serves as a binary classifier, tasked with
determining whether the given data point originated from the
training set. It outputs the indicative of the fact that the input
data record xtarget is a constituent of the target model M’s
training dataset.

In terms of the level of insight an attacker has into the target
model and its training data, we can distinguish between two
forms of MIAs: black-box and white-box. In the scenario of
a black-box attack, the attacker’s access is limited to output
of target model. This permits them to extract the prediction
vectors, namely the softmax output, but their insight ends
here. Shifting to the white-box attack, the situation is vastly
different. The attacker enjoys extensive access, stretching to
the complete details of the model: the weights, architecture,
and at times, even the gradients. This increased accessibility
endows the attacker with a more holistic comprehension of
the functioning of the model. To ensure a smooth transition
between these two scenarios, it’s vital to highlight that while
the black-box approach restricts the attacker’s knowledge,
the white-box approach amplifies it, encompassing even the
minutest of model details. Thus, the threat level in a white-box
attack escalates due to the comprehensive understanding it
affords the attacker.

III. ATTACK OVERVIEW

In this section, we present the attack scenario, then illustrate
threat model and problem formulation.

A. Attack Scenario

In practical scenarios, base models are often not trained
solely on publicly available datasets like ImageNet. Instead,
they might incorporate proprietary data to cater to specialized
and sensitive applications like fraud detection using financial
records [38], [39], disease diagnosis with personalized med-
ical imaging [40], [41], or biometric recognition in private
systems [42], [43], [44]. Commercialized models often include
meta-information about their training context that attackers can
exploit. Platforms like Hugging Face,1 Azure AI Services,2

1https://huggingface.co/models
2https://azure.microsoft.com/en-us/products/ai-services/

TensorFlow Hub3 frequently provide dataset descriptions (e.g.,
ImageNet, COCO), training methodologies, hyperparameters,
benchmarks, and README files outlining training purposes
and fine-tuning strategies. This detailed information allows
attackers to replicate the data distribution and architecture
in shadow models, facilitating realistic MIAs. For instance,
if a model is known to have been trained on a proprietary
medical imaging dataset for disease diagnosis, attackers can
simulate a similar dataset and shadow model, enabling them to
compare feature representations and infer patterns indicative
of the original training data. This comprehensive level of detail
makes shadow model creation straightforward and heightens
the risks associated with MIAs.

In the context of transfer learning, an attacker aims to
determine whether specific data were part of the teacher
model’s training by analyzing the intermediate outputs of
the student model. Despite being trained on a distinct, often
smaller, dataset, the student model retains information from
the teacher model through the transfer learning process. Thus,
having access to the student’s outputs offers clues that can
reveal the original training data.

The attacker systematically queries the student model, scru-
tinizing its intermediate outputs to detect patterns indicative of
the teacher model’s training data. They can construct shadow
models mimicking the student model’s behavior to analyze
discrepancies in feature representations. Comparing shadow
and student models, the attacker identifies discrepancies and
infers the likelihood of data belonging to the teacher model’s
training set. This approach is practical where adversaries
can observe or intercept model outputs, such as in shared
or distributed computing environments. Gaining insights into
intermediate outputs uncovers vulnerabilities in transfer learn-
ing, emphasizing the importance of securing these outputs.

B. Threat Model

Our research expands upon this by exploring the white-box
attack scenario, where the attacker can access model’s inter-
mediate output. Specifically, we consider the following attack
cases that are possible in transfer learning: MIA against the
teacher model while accessing the student model (At.T &
Ac.S), directly MIA against the accessible teacher model
(At.T & Ac.T), and directly MIA against the accessible student
model (At.S & Ac.S), thereby providing a comprehensive
investigation into the vulnerabilities across transfer learning
frameworks.
• At.T & Ac.S. The attacker has prior knowledge of the stu-

dent model’s parameters, structure, parameters, and training
data distribution, and also has access to the student model
itself. The goal is to decide if a particular data point was
used in the training process of the teacher model, without
having any knowledge of the teacher model. To achieve
this, the attacker may utilize the shadow model dataset
and the student model to generate feature sets and adaptive
thresholds for MIAs.

• At.T & Ac.T. The attacker has none knowledge of the
student model, but has prior knowledge of the teacher model.

3https://www.tensorflow.org/hub
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TABLE I
COMPARISON OF THREE DIFFERENT ATTACK CASES

The attacker’s goal is to decide if a specific data record was
used to train the teacher model.

• At.S & Ac.S. The attacker has prior knowledge of the
student model but lacks any knowledge about the teacher
model. The attacker attempts to perform MIA toward the
student model, i.e., deciding if a given input data record
was used to train the student model.
Despite their similar attack pipeline, the complexity of

At.T & Ac.T and At.S & Ac.S attack cases, differs signifi-
cantly due to the varying sizes of training data used to train
the teacher and student models. The teacher model is typically
trained from scratch using a substantial amount of data, while
the student model leverages a comparably smaller dataset for
its training, achieved through fine-tuning the teacher model.
As such, it is impractical to infer the student model’s mem-
bership using solely the information from the teacher model,
as the dataset used for the student model’s training is not part
of the teacher model’s training process. In this paper, we aim
to concentrate on these three potential attack cases, exploring
the viability of MIAs in transfer learning.

We also note that our white-box assumption models an
adversary with significant, yet plausible, system penetration
capabilities, aligning with scenarios where internal threats
or security breaches provide access to the model’s internals,
a consideration crucial for rigorous security evaluations. The
white-box access in our threat model is an intentional design
to test the upper bounds of an attacker’s capability, offering
a new stringent MIA security evaluation framework; this
higher threat level assumption is reasonable as it represents
the full exploitation of an attacker’s ability to pose serious
security threats, ensuring preparedness for worst-case scenar-
ios. In real-world scenarios, attackers can also pragmatically
deduce the nature of a base model’s tasks by examining the
student model’s attributes, supported by associated metadata
or domain-specific commonalities. This information enables
them to craft shadow models that reflect the teacher’s train-
ing context, making it a practical assumption for understanding
and mitigating potential vulnerabilities in transfer learning
frameworks.

C. Attack Formulation

The notions are given as Table II. The formation of the three
attack cases are given as follows.

At.T & Ac.S. We formulate the problem of At.T & Ac.S
as Eq. 2:

AAt.T &Ac.S(Ms( xtarget ), �s)→ {0, 1, 2} (2)

where AAt.T &Ac.S is the attack model. Ms is the student
model. Ms(xtarget ) is the output of student model. where the
attack model AAt.T &Ac.S is a three-class classifier. �s is the

TABLE II
NOTATIONS IN THIS PAPER

auxiliary knowledge from the student model, typically encom-
passing the model architecture, hyperparameters, or output
behaviors observed during interactions with Ms . Attackers can
deduce such information through public documentation, direct
model interaction, or inferential analysis based on common
practices within the domain of the student model’s application.
1 represents that the data point is a member of Mt ’s training
dataset. 2 represents that the data point is a member of
Ms’s training dataset. 0 represents that the data point is
a non-member of Mt ’s training dataset and Ms’s training
dataset.

The intuition behind this attack stems from the premise
that feature representations differ between a model trained on
specific data and an analogous model trained independently.
In transfer learning, these disparities in feature representations
between the student and a shadow student model, especially
when the latter is trained on disparate data, can reveal traces
of the teacher model’s training dataset. This approach capital-
izes on the fundamental principle that learned representations
in neural networks are inherently data-dependent, thereby
justifying the use of feature representation differences as a
mechanism for inferring membership in the teacher model’s
dataset.

At.T & Ac.T. We formulate At.T & Ac.T problem as Eq.3:

AAt.T &Ac.T (Mt (xtarget ), �t )→ {0, 1} (3)

where the attack model AAt.T &Ac.T is a binary classifier. Mt
is the teacher model. xtarget is the data used for membership
inference. Mt (xtarget ) is the output of teacher model, and �t
is the auxiliary knowledge from the teacher model. 1 repre-
sents that the data point is a member of Mt ’s training dataset
and 0 otherwise.

At.S & Ac.S. Given that the student model is trained based
on the teacher model, a portion of the structure and parameters
of the model are transferred to the student model. As a
result, the privacy related to membership is encoded within
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Fig. 2. Attack workflow of At.T & Ac.S.

the teacher model’s parameters. Despite the retraining of the
student model, the privacy implications persist. We represent
the problem of At.S & Ac.S as denoted in Eq. 4.

AAt.S&Ac.S(Ms(xtarget ), �s)→ {0, 1} (4)

where the attack model AAt.S&Ac.S is a binary classifier.
0 represents that the data point is not a member of Ms’s
training dataset. 1 represents that the data point is a member
of Ms’s training dataset.

IV. ATTACK DESIGN

In this section, we illustrate attack schemes of At.T & Ac.S.

A. Attack Model Training

As shown in Figure 2, the attacker first splits the shadow
student dataset into member and non-member datasets,
i.e., mDshadow

s and nDshadow
s . The shadow student model

M′s is trained using the member dataset. Then the attacker
queries the shadow student model and real student model
using the member dataset respectively, and obtains the feature
representation of the intermediate hidden layer, i.e., M′s(x)

and Ms(x), x ∈ mDshadow
s . Then the attacker calculates

the L2 distance between the two feature representations,
i.e., |M′s(x) −Ms(x)|, x ∈ mDshadow

s , which represents the
privacy of teacher dataset.

Typically, the tasks of the teacher and student models share
substantial similarities, making the inference of the teacher
model’s membership challenging once the student model is
trained based on the teacher model. For instance, the teacher
model might classify images of cats and dogs, while the stu-
dent model could be tasked with classifying different breeds of
cats. In such scenarios, it is considerably tough for an attacker
to infer the teacher model’s membership when querying the
model with non-membership data.

The attacker also generates random noisy images, Dn where
the generated images are without semantics. The attacker
queries the student model using the generated images and
gets the feature representation of the intermediate layer
Ms(x), x ∈ Dn . The feature representation of the intermediate
hidden layer is then labeled with different labels. Specif-
ically, the output feature representation queried using the
member dataset of the shadow student model is labeled
with 2, i.e., (Ms(x), 2), x ∈ mDshadow

s is labeled with 2.
The difference is calculated as the privacy of the teacher

Algorithm 1 Training Attack Model

Input: Dshadow
s , Dn , Ms

Output: The attack model A
1 Split Dshadow

s into mDshadow
s and nDshadow

s
2 Train the shadow model M′s using mDshadow

s
3 Compile the teacher-member dataset

(|Ms(x)−M′s(x)|, 1), x ∈ mDshadow
s

4 Compile the student-member dataset (Ms(x), 2),
x ∈ mDshadow

s
5 Compile the non-member dataset (Ms(x), 0), x ∈ Dn

6 Train the attack model A
7 return A

model member data, and is labeled with 1, i.e., (|M′s(x) −

Ms(x)|, 1), x ∈ mDshadow
s . Similarly, the student model is

queried using the randomly generated images, and the output
feature representation of the intermediate layer is labeled
with 0, i.e., (Ms(x), 0), x ∈ Dn . The attacker then uses
the labeled data to train the membership inference model.
The model is trained to distinguish three different classes,
i.e., teacher-member, student-member, and non-member.

Algorithm 1 details the attack model training process. The
shadow student dataset Dshadow

s is divided into the mem-
ber dataset mDshadow

s and the non-member dataset nDshadow
s

using a 1:1 ratio; specifically, 50% of Dshadow
s is randomly

selected to train the shadow model, forming mDshadow
s , while

the remaining 50% constitutes n Dshadow
s , representing data

that the shadow model has not encountered. The threshold
σ1 critically impacts the classification accuracy by dictating the
distinction between member and non-member data. An optimal
σ1 minimizes both false positives and negatives, thereby
enhancing the precision and recall of the attack model A.
As an example, Figure 4 present the feature representation of
the student model, the shadow student model, and the feature
representation differences. The feature representations and the
difference is then used to decide the membership of the teacher
and student models.

B. Attack Strategy

During attack phase, the attacker queries the student model
using the target data record xtarget , and derives the feature
representation of the intermediate hidden layer. Then, the
attacker queries the attack model using the output feature
representation and calculates the distance between the feature
representation and the labeled data in the training set. L2 dis-
tance is used as the distance metric. Specifically, there are
three cases:
• (i) dis(Ms(xtarget ),Ms(x)) < σ1, x ∈ Dshadow

s . This
indicates the feature representation of the target data record
is similar to from the feature representation of the student
shadow model member data. The target can be regarded as
a student-member data point and the attack result is 2.

• (ii) σ1 < dis(Ms(xtarget ),Ms(x)) < σ2, x ∈ Dshadow
s .

This indicates that the feature representation of the target
data record is not the number of student number. But it
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Fig. 3. Attack workflow of At.T & Ac.T (a) and At.S & Ac.S (b).

Fig. 4. A example of the raw image (a), the feature representation of
the student model (b), shadow student model (c), and feature representation
differences (d).

requires to further decide whether the target data record
is a teacher-member data point. The attack model calcu-
lates the L2 distance between the feature representation
and the labeled teacher-member data in the training set.
There are two special cases. If dis(Ms(xtarget ), |Ms(x)−

M′s(x)|), x ∈ Dshadow
s < σ3. The target data record can

be regarded as a teacher-member data point. The infer-
ence attack results is 1. If dis(Ms(xtarget ), |Ms(x) −

M′s(x)|), x ∈ Dshadow
s > σ3. The target data record can be

regarded as a non-member data point. The inference attack
results is 0.

• (iii) dis(Ms(xtarget ),Ms(x)) > σ2, x ∈ Dshadow
s . This

indicates the feature representation of the target data record
is different from the feature representation of the shadow
model member data. The inference attack results is 1.
In our approach, we use a distance metric dis(Ms(xtarget ),

Ms(x)) to measure how closely a target sample’s output
from the student model aligns with known samples. This
measurement is crucial for determining whether a sample is
likely part of the model’s training set. We set thresholds to
categorize these distances, aiding in accurately distinguishing
between members and non-members. These thresholds are
carefully determined to ensure our attack can effectively
identify membership status, demonstrating the practicality and
ingenuity of our method within transfer learning’s unique
framework.

C. Threshold Selection

In the At.T & Ac.S scenario for conducting MIAs, we estab-
lish three distinct thresholds to accurately determine if a data
record was part of the training set. Our threshold selection
algorithm outlines this process meticulously. For σ1, we pro-
cess the student shadow dataset through the student model,
mirroring the student model’s data distribution. We then cal-
culate the distance between feature representations from the
shadow student model and the actual student model data.

Algorithm 2 Threshold Selection

Input: mDshadow
s , Dn , Ms , and M′s

Output: The selected thresholds: σ1, σ2, σ3
1 for xinmDshadow

s do
2 distance1 ←− dis(M′s(x),Ms(x))

3 σ1 ←− median(distance1)

4 end
5 for x1, x2inDn , mDshadow

s do
6 distance2 ←− dis(d(Ms(x1),Ms(x2)))

7 σ2 ←− median(distance2)

8 end
9 for x1, x2inDn , mDshadow

s do
10 distance3 ←− dis(Ms(x1), |Ms(x2)−M′s(x2)|)

11 σ3 ←− median(distance3)

12 end
13 return σ1, σ2, σ3

The median value of these distances is chosen as the thresh-
old σ1, effectively classifying membership status. The use
of median values for threshold selection is based on their
robustness against outliers and their accurate representation
of central tendencies in data distributions. Medians provide a
stable threshold, less influenced by extreme values, ensuring
consistent performance across diverse datasets.

For establishing the threshold σ2, the attacker synthesizes
random noisy images to query the student model, subsequently
measuring the distances between these queried results and the
feature representations from the shadow model’s member data.
The median of these calculated distances is selected as σ2.
To set σ3, the attacker compares the feature representations
obtained from the noisy image queries against the differences
found between feature representations from the student model
and shadow model member data. The median value from these
comparative distances is then assigned as the threshold σ3, aid-
ing in the nuanced differentiation of membership inferences.

V. OTHER TWO TYPICAL ATTACKS

We also present two typical MIAs in transfer learning for
comparing, where MIAs are considered in a white-box way.

A. Attack Scheme of At.T & Ac.T

As shown in Figure 3(a), the attacker queries the shadow
teacher model using the data that participated in the shadow
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model training. The representation of the intermediate layer,
M′t (x), for x ∈ mDshadow

t is labeled with 1, indicating
membership. Similarly, the shadow teacher model is also
queried using data that did not appear in the shadow model
training. The output of the intermediate layer, M′t (x), for
x /∈ Dshadow is labeled with 0, indicating non-membership.
The attacker then uses the output of the intermediate layer and
the corresponding labels to train the attack model. The goal
of the attack model is to distinguish the membership status
of the shadow teacher model. In the attack stage, the attacker
queries the shadow teacher model using data that participate
in the shadow model training. The output of the intermediate
layer, M′t (x), for x ∈ mDshadow

t is labeled with 1, indicating
membership. Similarly, the shadow teacher model is also
queried using data that did not appear in the shadow model
training. The output of the intermediate layer, M′t (x), for
x /∈ mDshadow

t is labeled with 0, indicating non-membership.
The attacker then uses the output of the intermediate layer
and the corresponding labels, i.e., (M′t (x), 1) and (M′t (x), 0),
to train the attack model. The goal of the attack model is
to distinguish the membership status of the shadow teacher
model.

B. Attack Scheme of At.S & Ac.S

As shown in Figure 3(b), the attacker queries the shadow
model using the data that participated in shadow model
training. The output of the intermediate layer, M′s(x),

x ∈ mDshadow
s , is labeled with 1, i.e., belonging to the

member. Similarly, the shadow model is also queried using
the data not appearing in shadow model training. The output
of the intermediate layer, M′s(x), x /∈ mDshadow

s , is labeled
with 0, i.e., not belonging to the member. Then the attacker
uses the output of the intermediate layer and the correspond-
ing labels, i.e., (M′s(x), 1), x ∈ mDshadow

s and (M′s(x), 0),

x /∈ mDshadow
s , to train the binary classification model. The

model is trained to distinguish the members of the data from
the outputs of the intermediate layer. Similarly, in the attack
stage, the adversary queries the student model using the target
data record and get the feature representation of hidden layer.
Then, the attacker queries the attack model using the feature
representation and obtains the predicted membership status.

VI. EXPERIMENTAL RESULTS

In this section, we report performance results.

A. Evaluation Setup

1) Datasets: We used the following widely-used datasets
in previous MIA works for evaluation [13], [27], [28],
[31], [45]:
• ImageNet [46] serves as a foundational dataset in computer

vision, featuring extensive classes and images, commonly
used to train teacher models in transfer learning. The
pre-trained models are then adapted to student models
for tasks in similar domains, leveraging its detailed class
structure.

Fig. 5. The structure of ResNet50, we divided the model into five parts for
transfer learning in evaluation.

• CIFAR-100 [47] comprises 60,000 three-channel color
images across 100 varied classes like flowers and fish, each
with 500 training and 100 testing images of 32× 32 pixels.

• Flowers102 [48] features 102 flower types, totaling 7,169
images distributed across 102 classes with an imbalanced
dataset ranging from 40 to 258 images per class. The dataset
includes 6,149 training and 1,020 testing images.

• Cats vs. Dogs [49] dataset includes 25,000 training and
12,500 testing images, evenly divided between cat and dog.
2) Experimental Settings: ImageNet was used as the teacher

dataset to pre-train as teacher model as it contains various
classes and has the largest number of images. During our eval-
uation, we trained the teacher model using ResNet50, VGG19,
Inception v3, and DenseNet169 respectively. We reimple-
mented the CNN architectures used in our experiments under
TensorFlow 1.15.2.

In Figure 5, we illustrate the widely-used ResNet50 model
to evaluate performance of MIAs. The model is segmented
into five key parts: Part 1 includes initial convolution, normal-
ization, ReLU activation, and max pooling layers; Parts 2 to 4
contain progressively complex Identity (ID) Blocks for fea-
ture extraction; and Part 5 concludes with average pooling
and a fully connected (FC) layer for output generation.
In our experiments, Parts 1-3 of the teacher model were
immobilized to initialize the student models. We fine-tuned
these student models using the CIFAR-100, Flowers102, and
Cats vs. Dogs datasets, each inheriting pre-trained weights
from the teacher model. Additionally, we evaluated vari-
ous model architectures, including VGG19, InceptionV3, and
DenseNet169, experimenting with different freezing configu-
rations (e.g., Parts 1-2, 1-3, and 1-4) to observe the impact on
transfer learning effectiveness and subsequent inference attack
accuracy.

To ensure the evaluation fairness, we evenly divided the
teacher/student datasets into member and non-member groups,
ensuring no overlap and a balanced 1:1 ratio for unbiased
analysis. Given that the teacher and student datasets originate
from distinct sources, their different distributions enhance
the assessment’s robustness. For constructing shadow models,
we split their corresponding datasets into 70% for training
and 30% for testing, tailoring unique models to each student
task. Evaluations were conducted by querying the models with
a balanced mix of 10% member data and an equal amount
of non-member data from the testing sets. This process was
repeated across ten iterations for each attack scenario to derive
consistent performance metrics.

3) Metrics: MIA can be perceived as a binary classification
challenge: deciding whether a given data point belongs to
the target model’s training set (positive) or not (negative).
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Fig. 6. Performance of At.T & Ac.S under different datasets.

We used the widely-used metrics, including precision, recall,
accuracy, and the area under receiver operating characteristic
curve (AUC). Recall is the ratio of accurately classified
member data to total member data. Precision is the ratio of
correctly classified member data to all predicted member data.
Accuracy is the ratio of correctly classified data points to all
data points. AUC measures the likelihood that the prediction
score of member data exceed non-member data.

Our evaluations were conducted on Tesla P4*3 GPUs using
TensorFlow 2.5.0, with each model trained for 100 epochs,
a learning rate of 0.001, and a batch size of 32, utilizing Adam
as the optimizer. We partitioned the initial dataset, allocating
70% for training the teacher model and 30% for the student
model, predominantly using the ResNet50 architecture.

B. Overall Performance of At.T & Ac.S

We evaluated the performance of the proposed At.T &
Ac.S of using the input feature representation to perform
MIA. The teacher model was trained using ImageNet dataset
and ResNet50 as the base teacher model. We transferred
the teacher model to the student model using CIFAR-100,
Flowers102, and Cats vs Dogs dataset, respectively. Specif-
ically, we froze part 1-3 (Figure 5) to train the student model
when performing transfer learning. To perform the attack, the
shadow student model was trained from scratch using the
shadow student dataset, where the hidden layer did not contain
the behavioral characters of the teacher model.

Figure 6 presents the evaluation results of At.T & Ac.S on
three student datasets: CIFAR-100, Flowers102, and Cats vs
Dogs. Our method achieves accuracies of 0.581, 0.632, and
0.728, respectively, with AUC values approaching or exceed-
ing 0.7, indicating effectiveness beyond random guessing. The
proposed MIA remains effective across most teacher model
classes in transfer learning. Notably, the Cats vs Dogs dataset
demonstrates higher attack accuracy (0.728) and precision
(0.785) compared to CIFAR-100 (0.581, 0.642) and Flow-
ers102 (0.632, 0.681). We speculate this is due to Cats vs
Dogs having fewer classes and data points, resulting in smaller
changes during transfer learning.

C. Impact of the Number of Frozen Layers

To evaluate attack performance, we varied the number of
frozen layers in the student model, which was trained by
freezing different parts of the ResNet50 teacher model, ini-
tially trained on the ImageNet dataset. Specifically, ResNet50
was divided into five parts (Figure 5), and the student model

Fig. 7. Performance under varied freezing parts.

was trained by freezing parts 1-2, 1-3, and 1-4 respectively.
We transferred the model trained on the ImageNet dataset
to classify the Cats vs Dogs dataset. Figure 7 shows that
MIA accuracy improves with more layers frozen: 0.637 for
parts 1-2, 0.664 for parts 1-3, and 0.809 for parts 1-4.
We speculate that freezing more layers preserves more abstract
features, allowing the attacker to better distinguish data records
from the teacher model’s dataset. Freezing more layers dur-
ing transfer learning typically preserves pre-learned features,
potentially enhancing task accuracy for similar tasks, but may
limit adaptability for tasks with different nuances.

Additionally, we also experimented with the CIFAR-100
and Flowers102 datasets. For the CIFAR-100 dataset,
we observed a consistent trend with the Cats vs Dogs dataset,
where attack performance improved as more layers were
frozen, with accuracy varying from 0.527 to 0.681 across
different frozen parts. In the Flowers102 dataset, the results
were less pronounced but still indicated better attack per-
formance with more frozen layers, with accuracy varying
from 0.582 to 0.652. These observations suggest that the
relationship between the number of frozen layers and attack
efficacy is generally applicable, though the intensity of the
effect may vary depending on the dataset characteristics.

D. Comparison With SOTA Methods

We also conducted a systematic comparison of our pro-
posed MIA with SOTA methods, including Zou et al. [27] and
TransMIA [28]. Zou et al. [27] conducted an empirical study
of MIAs against transfer learning using shadow training tech-
niques, but did not consider the interconnectedness between
the teacher and student models. TransMIA [28] proposed
a transfer shadow training method for implementing MIAs
against transfer learning, where the attacker creates the shadow
model by leveraging the parameters of the transferred model.
Specifically, we compared the performance of using inter-
mediate feature representations to perform MIAs. Typically,
we froze first three layers (Figure 5) when performing transfer
learning to the student model, and the shadow student model
was trained from scratch using the shadow student dataset.

As shown in Figure 8, the performance of our proposed
approach is compared to SOTA methods on three datasets.
The results indicate that our method outperforms existing
methods on all three datasets. For instance, on the student
classification task of the cats vs dogs dataset, our method
achieves an accuracy of 0.728, which is superior to the
accuracy of 0.624 of TransMIA and 0.539 of Zou et al.
On the student classification task of the CIFAR-100 dataset,

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 04,2025 at 07:28:03 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: RETHINKING MEMBERSHIP INFERENCE ATTACKS AGAINST TRANSFER LEARNING 6449

Fig. 8. Comparison of SOTA methods and our method on MIA accuracy (a), precision (b), recall (c), and AUC (d).

TABLE III
PERFORMANCE UNDER DIFFERENT TEACHER-STUDENT MODEL

our method achieves an accuracy of 0.581, which surpasses
the accuracy of 0.525 of TransMIA and 0.478 of Zou et al.
Overall, our proposed MIA is able to expose more membership
privacy of the teacher model than SOTA methods.

E. Impact of Different Teacher Models

We evaluated the impact of different teacher models on the
performance of our proposed MIA using four different teacher
models. Specifically, we used VGG19 [50], ResNet50 [51],
Inception v3 [52], and DenseNet169 [53] as the teacher
model structure respectively, since these models achieve the
impressive performance and widely used for teacher model
training [54]. These models were trained on the ImageNet
dataset and transferred to three student datasets. Note that,
we used the same student model structure as the teacher model
structure. When transferring the teacher model to the student
model, we froze the first half of the model so as not to
participate in the model training, while the back half of the
model is included in the model updating. Specifically, we froze
the first three blocks for VGG1, part 1-3 for ResNet50, module
3×Inception and 5×Inception for Inception v3,and
the first two dense blocks for DenseNet169.

Table III presents the accuracy, precision, recall, and
AUC under four teacher models, i.e., VGG16, ResNet50,
Inception-v3, and DenseNet169, and three datasets,
i.e., CIFAR-100, Flowers102, and Cats vs Dogs. The results
indicate that our proposed method can be generalized to
different teacher models. For instance, when transferring to
the CIFAR-100 dataset, ResNet50, VGG19, Inception v3, and
DenseNet169 achieve an accuracy of 0.581, 0.545, 0.568,
and 0.593, respectively. Similarly, when transferring to the
Cats vs Dogs dataset, ResNet50, VGG19, Inception v3,

TABLE IV
ATTACK PERFORMANCE OF AT.T & AC.T UNDER FOUR

DIFFERENT MODEL STRUCTURES

and DenseNet169 achieve an accuracy of 0.728, 0.627, 0.700,
and 0.725, respectively. Additionally, it can be observed that
VGG is less susceptible to membership inference compared
to other model structures in transfer learning. One possible
explanation for this phenomenon may be that VGG is a
model with more parameters than the other models, and the
parameters of VGG are more challenging to train using the
same setting.

F. Performance of At.T & Ac.T and At.S & Ac.S

1) Evaluation of At.T & Ac.T: As mentioned before, in this
attack, the teacher model can be accessed by the adversary,
and the goal is to decide whether the input data record is
used to train the student model, which is similar to a typical
MIA. We evaluated the performance of At.T & Ac.T using
ImageNet as the teacher dataset under four typical models,
including VGG19, ResNet50, Inception v3, and DenseNet169.

Table IV shows accuracy, precision, recall, and AUC
of At.T & Ac.T under four teacher models, i.e., VGG16,
ResNet50, Inception-v3 and DenseNet169, The results show
that our method achieves an attack accuracy of 0.732, 0.652,
0.751, and 0.769 under the four teacher models, respectively.
The attack AUC is higher than 0.7, e.g., 0.869, 0.714, 0.830,
and 0.849. Besides, it can be observed that the attack accuracy
on ResNet50, Inception v3, and DenseNet169 is higher than
VGG19, where VGG19 is only with a MIA accuracy of 0.652.

In addition, we speculate that attack accuracies can be
significantly affected by the dataset overlap; for example,
a teacher model trained on the broad ImageNet and transferred
to the specialized Flowers102 might exhibit higher attack
accuracies due to the pronounced focus and enhanced feature
learning on flower classes, underscoring the role of data
relevance and specificity in the transfer learning context for
membership inference success.

2) Evaluation of At.S & Ac.S: We evaluated the perfor-
mance of At.S & Ac.S using three student datasets, including
CIFAR-100, Flowers102, and Cats vs Dogs, under the teacher
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Fig. 9. Attack performance of At.S & Ac.S under CIFAR-100, Flowers102,
and Cats vs Dogs dataset.

model of ResNet50 trained using ImageNet. We transferred
the teacher model to the three different tasks, respectively.
Specifically, part 1-3 (Figure 5) of the teacher model was
frozen to train the student model on the student dataset.
Figure 9 shows accuracy, precision, recall, and AUC of At.S &
Ac.S under different student datasets. The results show that
our method achieves a high attack accuracy of 0.774, 0.747,
and 0.839 on CIFAR-100, Flowers102, and Cats vs Dogs,
respectively. The overall attack AUC is higher than 0.85,
e.g., 0.854, 0.894 and 0.928 on three datasets. We also
observed that the attack performance on Cats vs Dogs dataset
is higher than CIFAR-100, Flowers102. We speculated that
the reason is that the classification task on Cats vs Dogs is
more simple than the other two datasets, and thus has a higher
classification accuracy when transferring the teacher model to
the student task.

VII. RELATED WORK

A. Memebership Inference Attack

MIAs have been the subject of a significant amount of
research, and it has been shown that they can compromise the
privacy of the training dataset of the target model [15], [37],
[55], [56], [57]. Existing MIAs can be roughly divided into
two categories: classifier-based and metric-based methods.

1) Classifier-Based Methods: Classifier-based methods in
MIAs use binary classifiers trained through shadow train-
ing to mimic the target model’s behavior and predict data
point membership status, effectively utilizing training and
testing data to generate informative datasets for inference [3],
[7], [58]. Shokri et al. [3] were pioneers, employing shadow
training for MIAs with black-box access, setting a foun-
dational methodology for others like Salem et al. [7], who
optimized this approach to enhance attack accuracy. Mean-
while, Long et al. [58] introduced strategic targeting within
MIAs, underscoring the strategic nuance in identifying and
exploiting model vulnerabilities.

2) Metric-Based Methods: Metric-based methods in MIAs
rely on analyzing prediction vector metrics against specific
thresholds to ascertain membership status [15], [57]. Yeom et
al. highlighted a novel MIA approach focusing on prediction
accuracy and loss, indicating that risks extend beyond model
overfitting [15]. Song et al. critiqued existing entropy-based
MIAs for neglecting true label characteristics, proposing a
refined method integrating prediction entropy with the actual
label for more accurate inference [57]. Similarly, Hui et
al. introduced a shadow-less referenceless membership infer-
ence utilizing prediction entropy to gauge data’s training

involvement without shadow models [59]. Li et al. embraced
a black-box framework, leveraging adversarial perturbation to
maintain efficacy even with limited model output [60], while
Liu et al. adopted a distilled loss trajectory approach for
membership detection, analyzing losses across model training
stages [61].

Recent research has examined white-box MIA scenar-
ios, where attackers obtain comprehensive access to the
target machine learning model’s architecture and param-
eters. Nasr et al. [62] discovered that while final predic-
tions and intermediate computations alone did not surpass
black-box attack accuracies, integrating gradients of the
prediction loss relative to model parameters significantly
improved attack effectiveness in white-box contexts. Similarly,
Jayaraman et al. [63] proposed an MIA that leveraged the loss
variability caused by perturbations, showing its effectiveness in
datasets with class imbalances. Besides, MIAs have been doc-
umented in adjacent domains like P2P federated learning and
clustered federated learning, where transfer learning features
are utilized. For instance, Luqman et al. [64] demonstrated
that federated learning structures are susceptible to MIAs due
to the shared learning frameworks.

B. MIAs Against Transfer Learning

Transfer learning, crucial for both industrial and academic
progress [35], [36], faces significant security risks, including
data poisoning [65], backdoor attacks [66], and susceptibility
to adversarial examples [1]. Within this context, the explo-
ration of MIAs by Zou et al. [27] and Hidano et al. [28] has
advanced understanding of these vulnerabilities, though limita-
tions in attack accuracy remain due to insufficient exploitation
of complex teacher-student model interrelations.

Zou et al. [27] conducted an empirical investigation into
MIAs under transfer learning, facing challenges in achiev-
ing high accuracy in black-box attacks, as shown in their
CIFAR-100 dataset results. Hidano et al. [28] improved
attack effectiveness using a white-box approach with a
transfer shadow training strategy, but this required specific
shadow model configurations of the teacher dataset. Our
research builds on these studies, adopting a nuanced white-box
framework that thoroughly examines differential feature repre-
sentations between teacher and student models. By dissecting
the intricacies of knowledge transmission and representation,
our approach aims to enhance the precision of membership
inference, expanding the discussion on securing transfer learn-
ing frameworks against such attacks.

Our approach leverages the interplay between teacher and
student models, analyzing hidden layer representation dis-
crepancies to infer membership status. Unlike conventional
black-box methodologies that may overlook this interconnec-
tion, our white-box-centric method, adaptable to black-box
scenarios via surrogate modeling, delves deeper into model
internals for more insightful analysis. Prior studies, such as
Zou et al. [27], may not fully address teacher-student model
interconnectivity due to black-box constraints. In contrast,
our method enhances attack efficacy in real-world transfer
learning contexts by capitalizing on this aspect. Additionally,
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TABLE V
COMPARISON OF OUR APPROACH AND EXISTING WORKS

we advance beyond TransMia [28] by integrating insights
from both teacher and student models, rather than isolating
the student model analysis. Table V presents a high-level
comparison of our approach and existing works.

VIII. DISCUSSION

This section discusses mitigation strategies and limitations.

A. Attack Mitigation Strategies

As of now, specific defense mechanisms to mitigate MIAs
in transfer learning are not well-defined [45], limiting our
ability to compare our study against established MIA defenses
and highlighting an urgent research gap. Future investigations
are imperative to devise and assess tailored defenses that can
effectively protect privacy within transfer learning contexts.

In this light, we outline potential defense strategies to
address MIAs in transfer learning environments: (i) Output
randomization and differential privacy, applying noise addi-
tion to model parameters and data or using subset-based
training and prediction thresholding [67], while it may reduce
the model performance; (ii) Adversarial training, integrating
adversarial examples into training to fortify defenses [33];
(iii) Generative learning approaches, leveraging genera-
tive adversarial networks to obscure membership signals;
(iv) Model splitting, distributing training across various models
on disjoint data subsets to obfuscate membership clues; and
(v) Model pruning, trimming unnecessary parameters to min-
imize information leakage and potentially pruning the teacher
model pre-transfer to attenuate the linkage with the student
model, thereby enhancing privacy protections.

B. Limitation and Future Work

Despite our diligent efforts to maintain the validity of
our study, certain limitations remain. We focused solely on
image classification tasks, omitting other domains such as
natural language processing, medical analysis, and object
detection. Additionally, our attack method targets typical
parameter-based transfer learning, excluding other types such
as instance-based, feature representation-based, and relational
knowledge-based transfer learning [68], [69], [70], [71]. Eval-
uating membership inference attacks across various transfer
learning methods and tasks is crucial. Our study mainly
considers attacks on the teacher model with prior knowl-
edge from the student model. Future research should explore
attack performance when examining prediction vectors for
different classes. While we used Euclidean distance as the
primary metric, other metrics like Manhattan and Cosine
distances showed lower MIA accuracy; thus, investigating

alternative metrics, such as Mahalanobis distance, is essential.
We observed that freezing larger parts of the model increases
recall and performance, which requires further mathematical
substantiation in future work.

1) Assumptions: While our model assumes white-box
access, offering a stringent evaluation context, the comparison
with existing works [27], [45], [72]’s black-box scenario is
to illustrate how model accessibility influences attack success.
Acknowledging the potential difference in real-world shadow
and teacher/student dataset distributions, our experiment uses
the same dataset to underscore our approach’s effectiveness
under less-than-ideal conditions. Future research will assess
this in more varied scenarios.

Our attacker model, grounded in white-box assumptions,
reflects practical adversarial capabilities in contemporary
cybersecurity landscapes, where attackers can access or infer
detailed model information. This model’s practicality is sub-
stantiated by real-world scenarios wherein entities might gain
insider information or exploit system vulnerabilities to access
model details, elevating our approach beyond traditional black-
box methods. By delving into the nuanced interconnectivity
between teacher and student models, our methodology not
only showcases superior performance over existing black-box
approaches like [27], [28] but also demonstrates a pragmatic
understanding of attack vectors, thereby enhancing the rel-
evance and applicability of our findings in addressing and
mitigating real-world transfer learning vulnerabilities.

In addition, while attack mitigation strategies can reduce
attack efficacy, it is important to consider their impact on
model performance. Future research should focus on balancing
privacy protection with accurate predictions, especially in
sensitive applications where membership inference attacks
pose significant risks. Also, future work will involve a detailed
empirical investigation into the dimensionality and feature
characteristics of different datasets to better understand their
impact on attack performance.

To adapt our methodology to the black-box setting, attackers
can use iterative queries to approximate the target model’s
behavior through a shadow model, which mimics the target
model’s responses. By analyzing discrepancies in output prob-
abilities and refining the shadow model, attackers can identify
membership patterns via probabilistic analysis. This adaptation
necessitates careful threshold tuning to maximize inference
accuracy without direct access to internal model parameters.
In a typical teacher → student → student transfer scenario,
each model retains features from the previous one, preserving
patterns indicative of the original teacher’s training data. Our
methodology can effectively trace these patterns, even across
multiple transfer levels. Future research should investigate the
resilience of this attack approach in complex transfer chains
to strengthen privacy defenses.

2) Model Structure: Our evaluation utilizes popular transfer
learning models, including ResNet50, VGG19, Inception v3,
and DenseNet169 [36], [73], selected for their optimal bal-
ance of computational efficiency and robust performance in
real-world applications. Their depth and complexity enable
nuanced analysis of hidden layer representations between
teacher and student models. By leveraging deep learning prin-
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ciples of feature representation and transferability, the method
is robust and generalizable across architectures with hierarchi-
cal feature processing. Preliminary tests using ResNet50 have
yielded promising results, underscoring the method’s potential.
To confirm its broad applicability and adaptability, future
research should evaluate additional models, e.g., Inception v2
and EfficientNet, and different frameworks, e.g., transformer
across varying architectures and complexities.

IX. CONCLUSION

In this study, we introduce a new MIA methodology in
transfer learning, elucidating the teacher model’s privacy
vulnerabilities. By analyzing the nuanced interplay between
teacher and student models, our approach effectively iden-
tifies and leverages differences in feature representations to
infer the knowledge transferred. Our extensive evaluations
confirm the efficacy of this method, revealing its capability
to uncover more significant privacy details from the teacher
model compared to existing SOTA approaches. These findings
underscore the critical need to account for the dynamic rela-
tionship between teacher and student models when assessing
and fortifying against membership inference threats in transfer
learning scenarios.
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