
Building Your Own Trusted Execution Environments Using FPGA
Md Armanuzzaman

CactiLab, University at Bu�alo
Bu�alo, USA

mdarmanu@buffalo.edu

Ahmad-Reza Sadeghi
Technische Universität Darmstadt

Darmstadt, Germany
ahmad.sadeghi@trust.informatik.tu-

darmstadt.de

Ziming Zhao
CactiLab, University at Bu�alo

Bu�alo, USA
zimingzh@buffalo.edu

ABSTRACT
Despite of their bene�ts, existing Trusted Execution Environments
(TEE) or enclaves have been criticized for lack of transparency, vul-
nerabilities, and various restrictions. A signi�cant limitation is that
they only provide a static and �xed hardware Trusted Computing
Base (TCB) that cannot be customized for di�erent applications.
The design violates the principle of least privilege by including un-
necessary peripherals in the hardware TCB and buggy peripheral
drivers in the software TCB. Additionally, Existing TEEs time-share
a processor core with the Rich Execution Environment (REE), mak-
ing execution less e�cient and vulnerable to cache side-channel
attacks. Although many previous projects have focused on address-
ing software issues in TEEs on SGX, TrustZone, or RISC-V, some
TEE issues are inherent in the hardware system’s design, making
them impossible to resolve with software alone.

In this paper, we present BYOT�� (Build Your Own Trusted
Execution Environments), which is an easy-to-use hardware and
software co-design infrastructure for building enclaves using Field
Programmable Gate Arrays (FPGA). BYOT�� creates enclaves with
customized hardware TCBs and establishes a dynamic root of trust
that allows untampered execution of Security-Sensitive Applica-
tions (SSA) from preexisting software on the hardcore system. Ad-
ditionally, BYOT�� provides mechanisms to attest the integrity of
enclaves’ hardware and software stacks. We implement a BYOT��
system for the Xilinx System-on-Chip (SoC) FPGA. The evaluations
on the low-end Zynq-7000 system for four SSAs and 12 benchmark
applications demonstrate the usage, security, e�ectiveness, and
performance of the BYOT�� framework.

CCS CONCEPTS
• Security and privacy! Systems security.

KEYWORDS
Trusted execution environment; �eld-programmable gate array

ACM Reference Format:
Md Armanuzzaman, Ahmad-Reza Sadeghi, and Ziming Zhao. 2024. Building
Your Own Trusted Execution Environments Using FPGA. In Proceedings of
the 2024 ACM ASIA Conference on Computer and Communications Security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
AsiaCCS’24, July 1–5, 2024, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN xx-x-xx-xx-x/xx/xx
https://doi.org/xx.xxx/xx.xxx

(AsiaCCS ’24), July 1–5, 2024, Singapore. ACM, New York, NY, USA, 16 pages.
https://doi.org/xx.xxx/xx.xxx

1 INTRODUCTION
Existing Trusted Execution Environments (TEEs) on commodity
computing devices rely on CPU hardware security primitives to
ensure the con�dentiality and integrity of code and data loaded
within them, while protecting them from the Rich Execution Envi-
ronment (REE). These hardware security primitives are provided by
the CPU and can either be proprietary, as in Intel SGX [1] and Arm
TrustZone [2], or open-sourced, as in RISC-V [3]. In recent years,
we have witnessed unprecedented growth in using such TEEs in
real-world products and academic projects, which include real-time
kernel protections [4, 5], securing containers and libraries [6–8],
shielding applications from attacks [9–11]. However, the hardware
layer of current TEEs su�ers from various issues, rendering them
untrustworthy or ine�ective.

Firstly, they only o�er a static and �xed hardware Trusted Com-
puting Base (TCB) that cannot be customized for di�erent applica-
tions at runtime. Although RISC-V allows for hardware customiza-
tion at design and manufacturing time, the resulting hardware
con�guration is static and cannot be changed after manufacturing.
The hardware primitives of TrustZone give the TEE the highest
privilege to control the REE and communicate with all peripherals,
thereby violating the principle of least privilege. It also includes un-
necessary peripherals and buggy peripheral drivers in the software
TCB [12], exposing the TEE to malicious peripheral inputs [13].
Meanwhile, SGX’s hardware requires applications in enclaves to
trust the REE Operating System (OS) to communicate with periph-
erals [14], bloating the size of the software TCB by including a
usually monolithic REE OS kernel.

Another signi�cant issue is that most commercially popular TEE
hardware, such as SGX and TrustZone, are proprietary and limited
to speci�c architectures, which require users to place blind trust
in their security. As a result, users cannot verify the correctness of
the TEE designs. Unfortunately, vulnerabilities, such as cache side-
channels, have been discovered in both SGX and TrustZone [15–19],
which undermines their security promises. Additionally, the propri-
etary nature of such TEE systems poses a challenge for researchers
to explore the security properties and capabilities of di�erent TEE
con�gurations. Although open-sourced TEE designs based on RISC-
V can be veri�ed at the design stage, dynamically attesting hardware
states at runtime remains an unsolved problem.

Software-based solutions alone on existing hardware TEEs can-
not address the aforementioned issues, which are rooted in the
design of their respective hardware systems. For example, S����
����� [20] con�gures the memory access controller to provide
multi-domain isolation for sensitive applications on TrustZone, and

AsiaCCS’24, July 1–5, 2024, Singapore Md Armanuzzaman, Ahmad-Reza Sadeghi, and Ziming Zhao

C��� [3] enables the exclusive assignment of system resources, e.g.,
peripherals, CPU cores, or cache resources, to each enclave on RISC-
V. While these solutions are noteworthy, they do not provide a cus-
tomizable and attestable hardware TCB at runtime. Other hardware-
based solutions, such as HECTOR-V [21] and Graviton [22], do not
address these issues either, and they cannot be deployed on com-
modity devices due to the need for hardware modi�cations.

In this paper, we present a hardware and software co-design
framework to Build Your Own Trusted Execution Environments
(BYOT��). BYOT�� utilizes commodity System-on-Chip (SoC) Field
Programmable Gate Arrays (FPGAs), e.g., AMDEPYC FPGA-infused
CPU [23] and Xilinx SoC FPGA, without requiring any hardware
changes. With the BYOT�� toolchain, users can quickly and easily
build multiple secure and customized enclaves on-demand to ex-
ecute their Security-Sensitive Applications (SSA). Each enclave is
designed to include only the hardware and software necessary for
the SSA and excludes other hardware and software components on
the system, minimizing the sizes of hardware and software TCB.

A SoC FPGA system, including FPGA-infused CPUs, integrates
both a hardcore CPU, e.g., x86/64, Cortex-A or RISC-V, and an FPGA
programmable logic architectures. The nature of FPGA enables on-
demand con�gurations of enclaves’ hardware TCBs, which may
include softcore CPUs, Block RAM based (BRAM; same as Static
RAM on known SoC FPGA devices) main memory, and peripherals.
Each enclave in BYOT�� has its own isolated physical address space,
which maps its own dedicated main memory, system con�gura-
tion registers, and peripherals. The software on the hardcore CPU
and other enclaves cannot access an enclave’s address space unless
it is explicitly speci�ed in the design. By assigning the hardware
resources to co-resident enclaves, BYOT�� creates a multiprogram-
ming environment, isolates software faults, and provides memory
protection on FPGAs. Enclaves in BYOT�� do not share processors
with each other or the hardcore system, which eliminates the cache
side-channel attack vector. Additionally, due to the characteristics
of BRAM, cold-boot attacks on these enclaves are challenging.

BYOT�� utilizes the secure con�guration process of the FPGA to
establish a dynamic root of trust that ensures complete isolation and
untampered execution of Security-Sensitive Applications (SSAs) in
enclaves from preexisting software on the hardcore system, includ-
ing the hypervisor and operating system. Additionally, BYOT��
o�ers both software- and hardware-based remote attestation mech-
anisms that operate under two threat models. To enable execution
of SSAs, external libraries and drivers for peripherals are required.
On the software front, the con�gurable F������� component of
BYOT�� provides essential software libraries such as libc, as well
as a Hardware Abstraction Layer (HAL), to minimize the software
Trusted Computing Base (TCB).

We have implemented the BYOT�� infrastructure and toolchain
for the Xilinx SoC FPGA. The toolchain comprises several com-
ponents, including H�������B������, which takes developers’
hardware resource requirements as input and generates hardware
modules and interconnections. By automating this process, H����
����B������ reduces the likelihood of developer-induced miscon-
�gurations and allows developers to focus on SSA development,
thereby increasing the usability ofBYOT��. Additionally, the system
and toolchain includeH��A��, a trusted decryption and attestation
hardware module implemented in bitstream, F�������, a software

runtime for SSAs, and SSAP�����, a tool used to encrypt and sign
an SSA binary. The contributions of this paper are as follows:
• WepresentBYOT��, a framework to create enclaveswithminimal
hardware and software TCBs on commodity SoC FPGA. The
framework can also help researchers who want to explore the
capabilities and security properties of di�erent TEE hardware
con�gurations. The idea of BYOT�� can be implemented on FPGA
systems with a secure con�guration process from any vendor;

• BYOT�� establishes a dynamic root of trust that allows full isola-
tion and untampered execution of SSAs in enclaves from preex-
isting software on the hardcore system;

• We present software- and hardware-based remote attestations
for two threat models to capture the identities of the enclave
hardware con�gurations, �rmware, and SSAs;

• We implement the BYOT�� system and toolchain for the Xilinx
SoC FPGA. We open-source the BYOT�� system and toolchain1;

• We demonstrate BYOT��’s usage, security, e�ectiveness, and
performance with the Embench-IoT benchmark and four SSAs
on the low-end MicroBlaze softcore CPU and Zynq-7000 system.

2 SOC FPGA AND ROOT OF TRUST
In this section, we provide an overview of FPGA and the hardware
modules and root of trust commonly found on a SoC FPGA. We
will also discuss the work�ow involved in designing, developing,
and securely con�guring a SoC FPGA.

2.1 Bene�ts of FPGA and FPGA in End Products
FPGA is designed to be con�gured by users using Register-Transfer
Level (RTL) code after manufacturing. Besides recon�gurability, it
has advantages of high performance, fast development round, etc.
While FPGAs were mainly used for hardware prototyping years
ago, their bene�ts and reduced costs have made them practical for
end products recently [24, 25]. A variety of FPGA products ranging
from embedded systems, i.e., Xilinx Zynq-7000 with only 3,600 logic
elements (⇡$70), to data center devices, i.e., Agilex F R25A with 2.6
millions of logic elements (⇡$10k), are available. Amazon Elastic
Compute Cloud has been o�ering FPGAs to their customers in F1
instances since 2017 [26], and AMD starts infusing EPYC CPUs
with FPGA in 2023 [23]. Various FPGA-based application-speci�c
accelerators, such as deep neural networks [27–29], classic and
post-quantum cryptographic algorithms [30, 31], Memcached [32],
have been proposed and deployed.

FPGA can be used to build general-purpose computing plat-
forms, in which users can design and implement their own softcore
CPUs or customize existing open-sourced [33–40] or proprietary
ones [41, 42]. The available softcore CPUs range from the par-
tially con�gurable (e.g., cache size, pipeline depth) and proprietary
low-end 32-bit MicroBlaze [41], to the fully customizable and open-
sourced mid-end 32-bit RISC-V [34, 43] and high-end 64-bit A2I
POWER processor [37]. Even though existing softcore CPUs on
FPGA have a lower maximum clock frequency, i.e., 500MHz, than
their hardcore counterparts, i.e., 4GHz, softcore and hardcore CPUs
with similar complexity and frequency have comparable perfor-
mance. While the low-end softcore CPUs are comparable to mi-
crocontrollers, the mid-end and high-end ones have performances
1https://github.com/CactiLab/BYOTee-Build-Your-Own-TEEs

Building Your Own Trusted Execution Environments Using FPGA AsiaCCS’24, July 1–5, 2024, Singapore

B
ridges

Interconnect

BRAM Flip-Flops

LE/LC DSP

ALMs/LUTs IOBs

In
te

rc
on

ne
ct

Hardcore
CPU

FPGA-side Secure
Storage, e.g., eFUSE

AES/HMAC
Multi-standard I/Os

FPGA Hardcore System
MIO/EMIO

UART I2C SPI GPIO

RSA

Hardcore-side Secure
Storage, e.g., eFUSE

RSA

AES/HMAC
BootROM

FPGA Config.
Module

Figure 1: SoC FPGA architecture. The modules in green are
the root of trust for the hardcore system and FPGA, respec-
tively. Note that BYOT�� only relies on the root of trust for
FPGA. Solid lines represent hard-wired connections, whereas
dashed lines represent con�gurable connections.

comparable to hardcore microprocessors [44]. Because it is possi-
ble to formally verify RTL implementations [45, 46], users do not
have to blindly trust a whole CPU but just the FPGA con�guration
modules and RTL veri�ers.

2.2 Hardware Modules and Root of Trust
Figure 1 shows the three main modules of a SoC FPGA. A hardcore
system is formed around hard processors, such as the x86/64 proces-
sor on AMD EPYC and the Cortex-A processor on Xilinx Zynq-7000
SoC [47], which includes a BootROM that contains the immutable
BootROM code. In the secure boot process of the hardcore system,
the BootROM code serves as the Static Root of Trust for Measure-
ment (SRTM) and uses the keys stored in the hardcore-side secure
storage, e.g., one-time programmable electronic fuse (eFUSE).

An FPGA can implement arbitrary systems, including softcore
CPUs. To this end, the FPGA is composed of con�gurable logic
blocks, Adaptive Logic Modules (ALMs), Lookup Tables (LUTs),
�ip-�ops, etc. In addition to the general fabric, the FPGA has Block
RAMs (BRAM) to store data. Note that BRAM is made of Static
RAM (SRAM) on existing SoC FPGA platforms. Compared to DRAM
whose cells are made of capacitors and is vulnerable to cold-boot
attacks due to the slow decay [48], SRAM decays faster [49]. The
FPGA also includes Input/Output Blocks (IOB) for interfacing.

An FPGA con�guration module con�gures the FPGA with a bit-
stream. The module not only con�gures the hardware but also
loads optional software onto the BRAM. Therefore, a bitstream
can include: (i) hardware con�gurations, which are programmed in
RTL hardware design description languages, such as Verilog and
VHDL; and (ii) optional software, e.g., �rmware, that runs on the
hardware con�gurations. In the secure con�guration process of the
FPGA, the FPGA con�guration module (FCM) serves as the Root of
Trust for Measurement and uses the keys in the FPGA-side secure
storage, e.g., BBRAM, eFUSE, to verify, decrypt, and con�gure an
encrypted bitstream. Note that the BootROM code cannot access
the FPGA-side secure storage, and vice versa.

2.3 Secure Con�guration of FPGA
A typical design and development �ow of general-purpose comput-
ing platforms on SoC FPGA involves: (i) the development of the
hardware on the FPGA, including designing the peripheral blocks
and creating the connections. In this step, a developer can use and

customize open-sourced and proprietary hardware IPs; and (ii) the
development of the software on the hardcore and softcore CPUs.

As aforementioned, the FPGA has a secure con�guration process,
which is independent from the secure boot process of the hard-
core system. To facilitate the secure boot and secure con�guration
processes, cryptographic keys can be generated o� the device and
programmed to the corresponding secure storage on the device
during manufacturing or through the JTAG interface if available.
These keys and the FPGA con�guration module are the root of
trust of BYOT��. When a SoC FPGA device is powered on, the
hardcore system boots. Privileged software, e.g., First Stage Boot
Loader (FSBL) or OS, on the hardcore system can read a bitstream
at any time from the persistent storage and send it to the FPGA
con�guration module, which veri�es and con�gures the FPGA.

3 SYSTEM, THREAT AND DEPLOYMENT
MODEL

System Model. We assume the secure con�guration process of
FPGA discussed in §2. We assume the DRAM can be con�gured to
connect to both of the hardcore system and FPGA, and peripherals
can be connected to the FPGAwithout routing through the hardcore
system. The former enables the hardcore system and FPGA mod-
ules to communicate e�ciently via shared memory, and the latter
makes sure the software on the hardcore system cannot eavesdrop
or tamper the data between the FPGA and peripherals. We assume
the hardcore system and Direct Memory Access (DMA) masters
cannot dump the content in the FPGA. All of the assumptions are
realistic in that they are the standard con�gurations on most com-
mercial systems [50]. Even though recent research [51] discovered
dumping content from the FPGA is possible due to some imple-
mentation bugs, it was not intended to be a feature. We assume the
cryptographic algorithms are secure.

Threat Models. We assume adversaries can compromise the
hardcore system at boot-time or runtime, which means applications,
kernel, and hypervisor are malicious. The compromised software
on the hardcore system can send arbitrary data to the �rmware
and SSAs in enclaves via shared DRAM regions and to the enclave
hardware pins, such as interrupts. Adversaries can also perform
cold-boot attacks to dump the content in DRAM.

For software running on the softcore CPUs, we �rst consider a
baseline model (BaseModel) as the baseline design. We then con-
sider BYOT�� under an enhanced attack model (EnhancedModel).
In BaseModel, the software in an enclave, including the �rmware
and SSA, are trusted and bug-free. The hardcore system cannot
compromise the �rmware or SSA at runtime, and remote attestation
can be implemented in the �rmware. This model is similar to the
Arm TrustZonemodel where software-based attestation is trustwor-
thy [52, 53]. However, this model is not realistic as the �rmware and
SSAs may have bugs that can be exploited by REE inputs [12, 54]. In
EnhancedModel, we assume that the �rmware and SSAs are buggy
and can be compromised. Therefore, measurement code and keys
cannot be kept in the same address space as the �rmware and SSAs.
This model is similar to the Intel SGX and Arm CCA [55] model
where trusted hardware components of the CPU perform remote
attestation. We do not consider the Time-Of-Check-Time-Of-Use

AsiaCCS’24, July 1–5, 2024, Singapore Md Armanuzzaman, Ahmad-Reza Sadeghi, and Ziming Zhao

(TOCTOU) attacks on hybrid remote attestation; however, we will
discuss possible solutions in §9.

Key Management Model. BYOT�� provides the necessary
mechanisms to build a secure system, which can integrate di�erent
deployment and key management models that are related to the
user and application’s policies and needs. In this paper, we discuss
two key management models for local and cloud deployment sce-
narios. We assume that the FPGA con�guration module securely
stores a device key, such as AES (:3) or RSA (B:3 , ?:3), which is
used to encrypt/decrypt and sign/verify a bitstream. These device
keys are unique to each device and are programmed in a secure stor-
age using hardware interfaces with physical access, such as during
manufacturing. We also assume that developers can be identi�ed
by a developer key, such as AES (:D) or RSA (B:D , ?:D), which they
use to encrypt and sign the SSAs. In BaseModel, the F������� uses
the developer key to decrypt and verify an SSA, and developer keys
are embedded into the F������� during the development stage. In
EnhancedModel, the developer keys are embedded in the trusted
hardware-based module H��A�� for decryption and attestation.

4 BYOTEE ARCHITECTURE
In this section, we �rst present the security and functional design
goals of BYOT�� followed by an overview of its architecture and
work�ow. We then illustrate hardware TCB customization, boot-
strapping trust in enclaves, secure execution of SSA, and remote
attestation mechanisms.

4.1 Design Goals
BYOT�� provides isolated execution environments on-demand,
which hardware debuggers andDMA-enabled devices cannot access.
With BYOT��, users can use the exact and even formally veri�ed
RTL design and software needed for their applications. BYOT��
has the following security and functional design goals:

G1. Customizable hardware TCB. The hardware TCB of each
enclave should be customizable, allowing for a minimum TCB that
only includes the necessary hardware, e.g., peripherals, for the
SSA and excludes other hardware on the system. Please note that
formally verifying the customized RTL hardware design [45, 46] is
beyond the scope of BYOT��.

G2. Remote attestation mechanisms. The mechanisms in BYOT��
should support protocols for remote veri�ers to attest to the in-
tegrity of an enclave’s hardware and software stacks. This includes
the bitstream, F�������, SSAs, and their inputs and outputs.

G3. General-purpose execution environments. BYOT�� should pro-
vide general-purpose execution environments, similar to SGX and
TrustZone, and not limited to application-speci�c accelerators [56].
The SSAs can be implemented in any programming language, as
long as they can be linked against the �rmware.

G4. Multiple isolated execution environments. BYOT�� should
provide multiple execution environments, similar to SGX, to ensure
the con�dentiality and integrity of the SSA running inside each
environment. TrustZone and Ambassy [56] only provide a single
execution environment, which can limit the �exibility of the system.

G5. Circuit-level execution isolation. BYOT�� should provide
dedicated CPUs for each execution environment, ensuring that all
hardware resources for each enclave are isolated from the REE

and from other enclaves at the circuit level. This approach miti-
gates micro-architectural side-channel attacks, such as cache side-
channel attacks, that are prevalent in CPU-sharing TEEs such as
SGX and TrustZone. However, please note that power side-channel
attacks [57] may still be possible, which will be discussed in §6.

G6. Isolated path between SSA and peripherals. An enclave should
isolate the communication path between the SSA and peripherals
from the hardcore system and other enclaves, preventing software-
based eavesdropping and tampering.

G7. Enclave-to-hardcore and Inter-enclave communication. The
SSA in an enclave should be able to communicate with software
on the hardcore system and other enclaves. The inter-enclave com-
munication should be isolated from the hardcore system and non-
participating enclaves.

G8. Allowing for minimum software TCB. The �rmware serving
an SSA should only include necessary housekeeping libraries and
drivers that are necessary for the SSA execution and exclude other
software on the system.

G9. Easy to use. BYOT�� should be easy to use, especially for
software developers who lack hardware programming experience.
As a rule of thumb, developing an SSA should not take signi�cantly
more time and e�ort than developing a Linux application with the
same functionality.

4.2 BYOT�� Overview
Figure 2 presents an overview of the architecture and work�ow of
the BYOT�� framework. The BYOT�� tools and codebase mainly
include the H�������B������, H��A�� for the EnhancedModel,
F�������, and SSAP�����. During the development stage, the
H�������B������ generates synthesizer commands based on
the SSA’s needs speci�ed in the developer’s hardware description
JSON input. Then, the vendor-provided synthesizer, e.g., Xilinx
Vivado [58], Intel Quartus Prime [59], generates the bitstream �le
using the synthesizer commands. The bitstream and F�������
binary are encrypted, signed, and packed by the vendor-provided
merger, e.g., UpdateMEM from Xilinx, into a protected bitstream. The
SSA binary is encrypted, signed, and packed by the SSAP����� into
a protected SSA. When the bitstream is loaded onto the FPGA, mul-
tiple enclaves can be created and F������� starts running. Then,
an untrusted application can trigger the loading of a protected SSA
into an enclave.

BYOT�� meets G1, G3, G4, G5, and G6 by con�guring the FPGA
to build enclaves. Enclaves are constructed with softcore CPUs,
which provide a general-purpose computing environment (G3).
Each enclave has its own set of hardware (G4), including a softcore
CPU (e.g., MicroBlaze, UltraSPARC), Block RAM, and peripherals.
Using FPGA routing, these hardware resources within an enclave
are connected together, but isolated from the hard-core system and
other enclaves (G5). The softcore CPU in an enclave is not time-
shared with the hard-core system and other enclaves, mitigating
cache side-channel attacks (G5). No additional hardware modules,
such as debuggers, can be connected to an enclave unless explic-
itly speci�ed by the developer (G1). Furthermore, all connections
among these resources are isolated at the circuit level from the
hard-core system and other enclaves, preventing eavesdropping
and tampering (G6).

Building Your Own Trusted Execution Environments Using FPGA AsiaCCS’24, July 1–5, 2024, Singapore

Hardcore CPU

OS

UA-a UA-b

Hardcore System

D
R

A
M

MicroBlaze

Firmware

SSA

FPGA

RISC-V

Block RAM

Enclave-a Enclave-b

SSA

A2I

Enclave-c

FirmwareELF

HBuilder
Bitstream

ELF

SSA Source
Code

Protected
SSA

Compiler

Compiler SSAPacker
Memory

Configuration

Protected
Bitstream

Firmware
Binary

SSA Binary

Linker
Script

Firmware
Source Code

C/CPP

Hardware
Description

JSON

C/CPP

Merger

Run-time

Firmware

SSA

Development-time
Software Development

Hardware Development

BYOTEE tools

Vendor-provided tools

BYOTEE codebase
Developer input

Binary

1

2

Secure Configuration

UIO

UA Source Code

C/CPP ELFCompiler
UA Binary

HW-ATT

HW-ATT

Synthesizer

Root of Trust

Keys

FCM

Figure 2: The architecture and work�ow of the BYOT�� framework at development- and run-time. During development,
BYOT�� and vendor-provided tools are used to generate the protected FPGA image and protected SSAs, which are loaded onto
the FPGA (1) and enclaves (2), respectively. In this runtime architecture example, three enclaves with di�erent hardware
con�gurations, including softcore CPUs and peripherals, are presented. Untrusted Applications (UA) access the shared DRAM
region through a userspace I/O interface (UIO).

Enclaves in BYOT�� use interrupts on softcore CPUs and shared
physical memory regions on DRAM to communicate with the REE.
In contrast, enclaves use interrupts and shared regions on the BRAM
to communicate with each other. Since a shared BRAM region is
only mapped in the address spaces of the participating enclaves,
it is isolated from the REE and other enclaves, satisfying G7. The
BYOT�� �rmware can be customized and only consists of libraries,
a HAL, and a loader for the SSA, meeting G8. To prove the integrity
of enclaves, BYOT�� provides remote attestation mechanisms under
two models, as required by G2. Additionally, BYOT�� provides an
easy-to-use toolchain for developers to focus on SSA development,
increasing the usability of BYOT�� and decreasing the chances of
developer-induced miscon�gurations, which satis�es G9.

4.3 Customizing Hardware TCB for Enclaves
To customize the hardware TCB, the developer designs enclaves
using a hardware description language, e.g., Verilog or VHDL. The
output is a hardware con�guration bitstream �le. To facilitate this
step, H�������B������ takes developer-speci�ed hardware de-
scription in JSON format as input (See an example in §5.2), allocates
hardware resources, and outputs a script, e.g., in Tcl format, that
can be processed by a synthesis tool to generate the bitstream. Each
enclave’s hardware description includes but not limited to: (i) a soft-
core CPU and its con�gurations, e.g., clock frequency, cache size,
etc; (ii) the selection of software- or hardware-based attestation
mechanism; (iii) a corresponding debug IP to enable software debug-
ging on the softcore CPU; iv) its main BRAM memory address and
size; (v) the address and size of the shared DRAM with the hardcore
system; (vi) the address and size of the shared BRAM with other
enclaves; and (vii) connected peripherals. The H�������B������
assigns a contiguous address space of the BRAM to each enclave
and connects the hardware components automatically.

TheH��A��Module. If an enclave uses hardware-based attes-
tation, H�������B������ will automatically connect the trusted
hardware H��A�� module to it. The H��A�� is implemented in
RTL and synthesized to a bitstream, and it can be formally ver-
i�ed. It is connected directly to the entire BRAM of the enclave

and can operate on the enclave’s BRAM directly. The H��A�� is
responsible for decrypting an SSA, computing the measurements,
and signing a measurement report. Cryptographic keys can be em-
bedded in the H��A��’s own BRAM to prevent other hardware
or software components from accessing them. In attestation under
the EnhancedModel, the H��A�� serves as the root of trust for
measurement and reporting.

4.4 Bootstrapping Trust in Enclaves
Software running on the hardcore system can con�gure the FPGA
by sending a protected bitstream to the FPGA con�guration module
(FCM), which is a trusted hardware module. The FCM veri�es the
bitstream using the device keys. Upon a successful veri�cation, the
FCM decrypts the bitstream using the device key and con�gures the
FPGA. After this step, the softcore CPU, H��A�� in the Enhanced-
Model, and the interconnections among hardware modules will
be con�gured. In addition, F������� on the softcore CPU starts
execution. A measurement< = � (18CBCA40<) is generated by the
FCM and placed on the shared DRAM region with the enclave for
the future use of attestation report generation. In the BaseModel,
the F������� uses the developer keys, e.g., :D and/or ?:D , to de-
crypt and measure the SSA. Allowed developer keys are embedded
in the F������� at the development stage. Because the F�������
is encrypted at rest and only decrypted on the BRAM, the devel-
oper keys are secure. Under the EnhancedModel, F������� can be
compromised, so it requests the H��A�� to decrypt and verify the
SSA. Because the H��A�� is also encrypted at rest and only has
the keys on its own BRAM at runtime, the keys are secure.

4.5 Executing SSAs in Enclaves
To create an SSA, the developer links the code against the F�������.
After launching an enclave, the F������� initializes the softcore
CPU and other components, then it waits for requests from the
hardcore system. Both the F������� and SSA use a shared DRAM
region in the SSA Execution Block (SEB) format as shown in Fig-
ure 3, to have two-way data transmissions with UA on the hardcore

AsiaCCS’24, July 1–5, 2024, Singapore Md Armanuzzaman, Ahmad-Reza Sadeghi, and Ziming Zhao

Chal
Input
SSA*
Output

PreExecAtt
PostExecAtt

Vector table
 FIRMWARE .text/.rodataSEB (DRAM)

Enclave Address Space (BRAM)

Chal
Input

SSA .text/.rodata

Output
PreExecAtt
PostExecAtt

 FIRMWARE .data/.bss
 SSA .data/.bss

Heap
Stack

4

2

3

1

5

6

Copy to BRAM
Decrypt, verify, &
load by HW-ATT
or FIRMWARE

Pre-execution
measure & copy
PreExecAtt to SEB
by HW-ATT or
FIRMWARE

Execute SSA
Post-execution
measure & copy
PostExecAtt to
SEB by HW-ATT
or FIRMWARE

Copy output to
SEB

7 Clean up

m m

Figure 3: SSA Execution Block (SEB) layout, simpli�ed en-
clave address space layout, and steps in executing an SSA.

system. To initiate the transmission from the hardcore system to
an enclave, UA on the hardcore system raises interrupts on the en-
clave’s softcore CPU, which are handled by the F�������. BYOT��
de�nes three primitives through the LdExec* interrupts: (i) load
and execute an SSA (LdExec); (ii) load and execute an SSA with pre-
execution attestation (LdExecPreA�); (iii) load and execute an SSA
with post-execution attestation (LdExecPostA�). The softcore CPU
interrupts can be implemented as GPIO interrupts in the enclave
and memory-mapped to a DRAM address for the UA to access. In
this subsection, we focus on LdExec, and the other two primitives
are discussed in §4.6.

To execute an SSA on an enclave, the untrusted application �rst
�lls data into the SEB and raises a LdExec* interrupt. As shown
in Figure 3, a SEB has regions for the encrypted and signed SSA
(SSA*), input data for the SSA, output data from the SSA, a challenge
⇠⌘0; from a remote veri�er, a pre-execution (%A4⇢G42�CC), a post-
execution attestation measurement (%>BC⇢G42�CC) and other data.
When the F������� receives a LdExec* interrupt, it copies SSA*,
⇠⌘0; , and input data in the SEB from DRAM to its own BRAM 1 .
The F������� can disable LdExec* interrupts after data is copied.

Under the BaseModel, the F������� then decrypts and veri�es
the encrypted SSA* using the corresponding developer’s keys 2 .
Under the EnhancedModel, the F������� requests the H��A��
to decrypt and verify the encrypted SSA*. Upon the successful
veri�cation of the SSA’s integrity, the F������� loads sections of
the decrypted SSA to the right locations and gives the control to
the SSA 5 . If there is an output, the SSA writes it in the output
region on the BRAM, and yields the control of the softcore CPU
back to the F�������. The F������� copies the output from the
BRAM to the DRAM 6 . Finally, the F������� cleans up all the
input, output, and SSA-related regions on the BRAM and awaits
new requests from the hardcore system 7 . While SSAs can execute
concurrently on their own enclaves respectively, the F�������
also supports executing multiple SSAs sequentially or the same
SSA multiple times on the same enclave without recon�guring the
FPGA but just re-initializing the enclave, e.g., �ush the cache, clean
up the BRAM 7 .

4.6 Remote Attestation Mechanisms
BYOT�� provides two attestationmechanisms, namely pre-execution
and post-execution attestations. The former extends remote attesta-
tion of code and input integrity with bitstream, whereas the latter
extends the output data integrity attestation [60]. Note that BYOT��
only provides the mechanism for attestation, which can support
sophisticated attestation protocols. With the help of trust boot-
strapping discussed in §4.4, the measurement mechanism not only
captures the identity of the loaded SSA but also the bitstream, in-
cluding hardware con�gurations and the F�������. Note that it
is critical to perform measurement on the BRAM since the DRAM
can be changed asynchronously by the hardcore system.

Software-based Attestation under the BaseModel. In pre-
execution attestation, a veri�er sends a cryptographic nonce as
⇠⌘0; , which is copied to the BRAM by the F������� 1 . After load-
ing the SSA sections to the right addresses, the F������� computes
a measurement %A4⇢G42�CC on the vector table, F������� code
and data,<, ⇠⌘0; , input data and SSA sections 3 , and copies the
measurement to the DRAM. Depending on scenarios and attesta-
tion protocol details, the F������� can use a developer key or
other shared keys to compute the measurement. In post-execution
attestation, after the SSA �nishes execution 4 the F������� com-
putes a measurement %>BC⇢G42�CC on the vector table, F�������
code and read-only data,<,⇠⌘0; , input data, output data generated
by the SSA, SSA’s read-only sections and %A4⇢G42�CC , and copies
the measurement to the DRAM 5 .

Hardware-based Attestation under the EnhancedModel.
The F������� does not perform the measurements under the En-
hancedModel because it does not possess keys. Instead, it requests
the H��A�� to compute the measurements. As discussed in §4.3
and shown in §7.4, the H��A�� is directly connected to the BRAM
of the enclave, and it computes the measurements by reading the
contents from the BRAM. The H��A�� then signs the measure-
ments with the its keys and returns them to the F������� or REE,
which then sends the signed measurements to the remote veri�er.

4.7 Multiple Inputs to SSA
In the case that the UA on the hardcore system needs to continu-
ously send data to the SSA, e.g., not all input data is available at the
beginning, the size of SEB is not big enough, etc., the UA writes the
newly available input data in the input region inside the SEB, and
it can use two mechanisms to notify the F������� and SSA that
new data is available. The �rst mechanism works for softcore CPUs
that support priority interrupts. On such systems, BYOT�� de�nes
a NewData interrupt, which UA can raise. The NewData interrupt
has a low priority so that it cannot interrupt the execution of the
SSA. Only after the SSA �nishes execution and yields the control
back to the F�������, the F������� can copy the input data from
the DRAM to the BRAM, and gives the control to the SSA again.
On softcore CPUs without priority interrupts, the F������� uses
global variables to indicate whether new data is available in the
input region to synchronize with the SSAs on the enclaves.

4.8 Optional Multiple Protected SSA Sessions
As an option, an enclave can also interleave the execution of multi-
ple SSAs with proper hardware re-initialization, e.g., �ush cache,

Building Your Own Trusted Execution Environments Using FPGA AsiaCCS’24, July 1–5, 2024, Singapore

reset all memory, etc. To this end, BYOT�� de�nes two service prim-
itives: (i) suspend and export the SSA state (SusExp); (ii) restore and
execute a saved and encrypted SSA state (ReExec). When a SusExp
interrupt is raised, the F������� copies the SSA context, e.g., gen-
eral and system registers, onto the BRAM. Then, the F������� uses
the developer key to encrypt and sign the saved SSA context and
all of the SSA’s writable memory regions, e.g., stack, .data, .bss, etc.
The encrypted blob is placed in the SEB output region for the UA
to retrieve, after which F������� cleans up BRAM and awaits new
requests. When a ReExec interrupt is raised, F������� retrieves
an encrypted blob from SEB. Upon a successful signature veri�ca-
tion, F������� loads the decrypted memory contents to the right
locations, restores the registers, and resumes the SSA execution.

5 APPLICATIONS AND DEVELOPER’S
PERSPECTIVE

In this section, we use four SSA examples to demonstrate how
BYOT�� can secure real-world applications in several classes. Then,
we discuss how developers can easily develop and deploy enclave,
SSAs, and UAs using the BYOT�� toolchain.

5.1 BYOT�� Applications
Computational Applications. Computational applications take
input from the hardcore system or other enclaves, perform the in-
tended computational operations, and send the outputs back. They
represent computational tasks, such as encryption, decryption, ma-
chine learning-based classi�cation, etc., that do not need peripher-
als. BYOT�� protects such applications from code and data disclo-
sure, memory corruption, and cache side-channel attacks from the
hardcore system and other enclaves at runtime. We implemented
an AES accelerator SSA (SSA-1) as an example for computational
applications. To use SSA-1, a UA places the plaintext or ciphertext
in the SEB and noti�es the SSA. When the encryption or decryption
is �nished, SSA-1 places the outputs on the SEB.

Peripheral-Interacting Applications. These applications in-
teract with peripherals but do not communicate with other SSAs
or the hardcore system. For instance, cyber-physical applications
that read from sensors, make local decisions, and control an actua-
tor fall under this category. Besides the attacks BYOT�� protects
the computational applications from, BYOT�� protects the paths
between the SSA and peripherals from attacks. To demonstrate
this protection, we developed an LED toggler SSA (SSA-2) that
utilizes a button and an LED. Both the button and LED are solely
connected to the enclave of SSA-2, rendering them inaccessible by
the hardcore system or other enclaves.

Peripheral- andHardcore System-InteractingApplications.
For demonstration, we developed a music player with digital rights
management that guarantees the con�dentiality, integrity, and au-
thenticity of songs. This means (i) songs cannot be digitally dis-
closed, (ii) songs cannot be modi�ed, and (iii) only songs that were
protected can be played.

To this end, the music player system has three components: (i)
a trusted song protector (in Python with 160 SLOC), which is an
o�ine component to encrypt and sign a song �le (WAV format);
(ii) a UA (in C with 695 SLOC) running on the hardcore system,
which provides a user interface to play, pause, resume, and stop

1 {�Enclaves�: [
2 {�Name�: �Enclave -a�,
3 �Processor�:
4 {�Type�: �MicroBlaze 32bit�, �Debugging�: �Enabled�},
5 �Memory Size�: �512KB�,
6 �Shared DRAM SEB�:
7 {�Base�: �0x20000000�, �Size�: �2MB�},
8 �Attestation�: �Hardware�},
9 {�Name�: �Enclave -b�,
10 �Processor�:
11 {�Type�: �VexRisc 32-bit�,
12 �Data Cache�: �16KB�, �Instruction Cache�: �16KB�,
13 �FPU�: �F32�, �Debugging�: �Disabled�},
14 �Memory Size�: �32MB�,
15 �Shared DRAM SEB�: {
16 �Base�: �0x20000800�, �Size�: �128MB�},
17 �Attestation�: �Software�}},
18 {�Name�: �Enclave -c�,
19 �Processor�:
20 {�Type�: �A2I 64bit�, �Data Cache�: �64KB�,
21 �Instruction Cache�: �64KB�,
22 �MMU�: �Enabled�, �MMU Page Size�: �4KB�,
23 �FPU�: �AXU�, �Debugging�: �Disabled�},
24 �Memory Size�: �64MB�,
25 �Shared DRAM SEB�: {
26 �Base�: �0x20020800�, �Size�: �256MB�},
27 �Attestation�: �Software�}}],
28 �Peripherals�: [
29 {�Type�: �AXI Gpio�,
30 �Board Interface�: �Btns 2bits�,
31 �Access�: [�Hardcore system�, �Enclave -b�]},
32 {�Type�: �Uart Lite 8bit�,
33 �Baud Rate�: �115200�,
34 �Access�: [�Enclave -a�]},
35 {�Type�: �Dual Port BRAM Generator�,
36 �Base Address�: �0x1F0000�, �Size�: �2MB�,
37 �Access�: [�Enclave -a�, �Enclave -c�]}]}

Listing 1: An example hardware description de�ning three
enclaves in JSON format.

a protected song. The UA awaits for the user’s commands, reads
protected songs from storage, e.g., SD card, and sends them to the
song playing SSA. Because the protected song �le is big (e.g., an
original 77 seconds, 48KHz, and a single channel WAV �le is around
33MB. The protected song �le is several hundred bytes bigger.), the
UA needs to continuously read the protected song �le data from the
storage and send it to the SSA; (iii) a song playing SSA (SSA-3) that
authenticates, decrypts, and plays a song by sending the plaintext
data of it to a hardware audio module. The hardware audio module
is only connected to the enclave running SSA-3.

We emphasize that any software solution that solely trusts SGX
or TrustZone cannot meet the security requirements of this music
player because (i) there is no trusted I/O path between an SGX
enclave and the hardware audio module; hence a malicious REE OS
can breach the con�dentiality, integrity, and authenticity of a song.
Some solutions, such as SGXIO [61], attempt to address this issue
but they add additional hardware, e.g., the hypervisor, into the TCB;
(ii) a TrustZone application must decrypt the song in DRAM before
sending it to play; hence, vulnerable to cold-boot attacks.

Distributed Applications. A distributed application consists of
multiple inter-communicating SSAs running on di�erent enclaves
at the same time. The SSAs communicate through a shared BRAM

AsiaCCS’24, July 1–5, 2024, Singapore Md Armanuzzaman, Ahmad-Reza Sadeghi, and Ziming Zhao

region. BYOT�� not only protects each of the SSAs but also their
communications from the hardcore system and other enclaves. For
demonstration, we developed an application that processes data
in sequence with two SSAs. SSA-1 �rst receives data from a UA,
decrypts the data, outputs to the shared BRAM instead of DRAM,
and the second SSA (SSA-4) takes the output of SSA-1 and performs
a SHA512-HMAC signature veri�cation.

5.2 Developer’s Perspective
Creating Enclave Hardware. A developer can use the H����
����B������ to design and create the hardware consisting of one
or multiple enclaves. Listing 1 shows an example hardware de-
scription in JSON format of three enclaves. Enclave-a has a 32-bit
MicroBlaze softcore CPU [62] and uses hardware-based attestation.
Enclave-b has a 32-bit VexRisc softcore CPU [34], Enclave-c uses a
64-bit A2I softcore CPU [37]. The softcore CPUs of Enclave-b and
Enclave-c have FPUs, instruction, and data caches. Hardware-based
attestation and debugging is enabled on Enclave-a only, for which
H�������B������ inserts theH��A�� and a debugging module. A
DRAM region is reserved for the SEB of each enclave, respectively.
A UART peripheral is only connected to the Enclave-a and cannot be
accessed by the hardcore system or the other enclave. Additionally,
a GPIO peripheral is connected to both the hardcore system and
Enclave-b but cannot be accessed by Enclave-a or Enclave-c. Each
enclave shares a DRAM region with the hardcore system for two-
way enclave-to-hardcore System communication. Enclave-a and
Enclave-c can also use the shared BRAM region to communicate.

The developer uses H�������B������ to generate hardware
con�gurations, which outputs scripts containing the synthesizer
commands. The -d parameter speci�es the JSON con�guration �le,
and -o de�nes the output path.
hardwareBuilder.py -d <CONFIG_JSON > -o <SCRIPT >

Then, the developer invokes the synthesizer tool with the script
as input. The -n parameter speci�es the name of the hardware
project, and the bf parameter speci�es the mode of operation,
which includes generating bitstream, combining bitstream with
F�������, etc. The output of the H�������B������ is a bitstream
�le speci�ed by -o.
createFPGAImage -d <TCL > -n <PROJ_NAME > -bf <BUILD_FLAG >

-o <FPGA_IMAGE >

Creating Boot Images.After theH�������B������, the devel-
oper uses the boot loader creation tool with the developer-de�ned
boot image format, e.g., .bif, and the protected FPGA image to
create a deployable binary �le.
createBootImage <SYSTEM_BIF > <FPGA_IMAGE > -o <BYOTee_BIN >

Creating SSAs and UAs. Software modules developed in any
language that can be linked against the F������� can be included
in an SSA. For example, SSAs developed in C can have their own
main functions with a declaration of int main() __attribute__
((section (�.text.ssa_entry�))). Not all libc functions are
available for the SSAs to use. To move data among DRAM, BRAM,
and peripheral memories, system-speci�c underlying mechanisms
will be used. The F������� provides a HAL with interfaces like
BYOT_MemCpy to replace the libc memcpy. The UAs execute as unpriv-
ileged applications on the hardcore system and uses a UIO interface

to communicate with the F������� and SSA. The developer uses
the SSAP����� to generate protected SSA binaries.

SSAPACKER -d <SSA_BIN > -o <PROTECTED_SSA >

6 SECURITY ANALYSIS
We conduct an informal security analysis of BYOT��, in which we
discuss the attacks BYOT�� can and cannot defend.

Compromised Hardcore System. Even if the hardcore system
software is compromised at runtime, the attacker cannot access
the data on/from enclave hardware resources, because they are
in the isolated address space of the target enclave. The attacker
cannot breach the con�dentiality of bitstream, SSA code and data at
rest as well, because they are encrypted at build time. The enclave-
hardcore system’s two-way communication is based on interrupts
and the shared DRAM. Malicious hardcore system software can
raise the interrupt to the enclave to carry out a DoS attack. Utilizing
priority interrupts in sophisticated softcore processors, BYOT��
can prevent these attacks from the hardcore system side.

Compromised F������� and SSAs. In the BaseModel, we as-
sume F������� and SSAs are bug-free and cannot be compromised.
Under the EnhancedModel, if F������� and SSAs are compromised
at runtime by malicious input sent by the hardcore system, they
can disclose information in the compromised enclave address space,
including data on the BRAM and data from the connected peripher-
als. But it cannot read data from the BRAM or peripherals of other
enclaves. Therefore, the attack is con�ned within the compromised
enclave. The compromised F������� and SSA cannot extract the
keys from the H��A�� to forge measurement reports, since the
BRAM of H��A�� is not connected to the enclave.

Malicious Hardware IPs and Peripherals. Malicious hard-
ware IPs cannot be loaded since a bitstream is signed by a trusted
developer and veri�ed before loading. Even if peripherals are mali-
cious and send out rogue DMA requests to access sensitive memory
regions, they are con�ned in the enclave they are assigned to. There-
fore, a malicious peripheral can only cause limited damages.

Cold-boot Attack. While cold-boot attacks on DRAM at room
temperature are proven very e�ective [48], attacks on SRAM with-
out external power sources are less feasible [49]. Most data BYOT��
stores on the DRAM is either encrypted or does not need to be
protected. For instance, even if the SEB is located on the DRAM and
subject to cold-boot attacks, the SSA*, which includes developer
keys, is encrypted. Obviously, Chal, PreExecAtt, PostExecAtt do not
need to be protected. It is, however, possible to dump the input
and output �elds of the SEB using cold-boot attacks on DRAM.
Other sensitive data, such as developer keys, plaintext SSA, the
program states, are placed on an enclave or the H��A��’s BRAM.
Cold-boot attacks on BRAM are di�cult because: (i) the BRAM cells
are hardware initialized during FPGA con�guration in many SoC
FPGA systems [63]; (ii) even without initialization, the contents
in BRAM decays faster [49]; (iii) BRAM is embedded on-chip and
cannot be physically taken out, so attackers have to bypass software
protections to dump its content.

Cache Side-channel. Because the CPU is time-shared between
the REE and TEE in SGX and TrustZone, cache side-channel attacks
are e�ective [15–18]. In BYOT��, the REE on the hardcore system

Building Your Own Trusted Execution Environments Using FPGA AsiaCCS’24, July 1–5, 2024, Singapore

side and enclaves do not time-share any CPU resources; hence,
there is no cache side-channel.

Power Side-channel. In FPGA-based remote power side-channel
attacks, the attacker builds an on-chip ring oscillators-based power
monitor to conduct power analysis on other modules on the same
FPGA or a CPU on the same SoC [57]. BYOT�� cannot mitigate
these attacks but can prevent them by only loading authenticated
and trusted enclave bitstreams that do not have a power monitor.

Other Side-channels. When multiple enclaves reside on the
same SoC FPGA, they share FPGA hardware resources. Therefore,
it is possible to conduct other sharing-based side-channel attacks,
such as FPGA long wire-based attacks [64, 65]. Similar to power
side-channel attacks, BYOT�� cannot prevent these attacks directly.

7 IMPLEMENTATION AND EVALUATION
We present an implementation of the BYOT�� framework for the
Xilinx SoC FPGA and evaluate it on a low-end Digilent Cora Z7-07S
development board (⇡$130).

7.1 Experiment Environment
The Cora Z7-07S board has a single-core 667MHz Arm Cortex-A9
processor with 512MB DDR3 memory, 32KB L1 cache, 512KB L2
cache and a Xilinx Zynq-7000 FPGA. The Zynq-7000 FPGA has 3,600
logic cells, 14,400 LUTs, 6,000 LUTRAM, 28,800 �ip-�ops, a 225KB
BRAM, 66 Digital Signal Processing (DSP) slices, and 100 IOBs. The
development board also has an SPI header, two push-buttons, two
RGB LEDs, a microSD card slot, and two Pmod connectors. We
connect a Pmod I2S2 audio input and output device [66] to the
board for SSA-3 evaluation. Figure 7 shows the top and bottom
view of the board with the connected audio device.

7.2 BYOT�� Implementation
We implemented the BYOT�� infrastructure and toolchain, which
include H�������B������, H��A�� for the EnhancedModel, SS�
AP�����, and F�������, for the Xilinx SoC FPGA. TheH��������
B������ was developed in Python (2.5K SLOC). H��A�� can be
developed in VHDL or C on a softcore CPU. In our implementa-
tion,H��A�� includes 1400 SLOC C code. The SSAP����� includes
Python (63 SLOC) and C code (420 SLOC). The F������� was de-
veloped in C and has an SSA loader and cleaner (1.1K SLOC), an
attestation module for the BaseModel (333 SLOC), an interrupt ini-
tialization and handling module (101 SLOC), and a linker script (212
lines). The F������� is linked against the vendor-provided HAL
(7.9K SLOC) and libraries, e.g., libc (1.2MB), etc. The F�������,
especially the HAL, can be customized to re�ect an SSA’s needs.
Our implementation uses AES-256 for SSA encryption and SHA512-
HMAC to protect the integrity and authenticity of SSAs. We use
the BLAKE2 [67] hash algorithm to implement the pre-execution-
and post-execution-attestations. On the hardcore system side, a
userspace I/O interface is used for the UAs to access the shared
DRAM regions between the hardcore system and FPGA. The BY�
OT�� toolchain also includes scripts to automate the steps from
synthesizing the hardware, compiling SSAs and F�������, and
formatting the SD card with partitions.

7.3 Customized Enclaves for the Example SSAs
We speci�ed the hardware description for the SSAs in §5.1 and
used the H�������B������ and synthesizer to generate the bit-
stream. All the enclaves are con�gured with a 32-bit Microblaze
CPU (version 10.0, 100MHz, no instruction/data cache, no FPU).
The Enclave-1, Enclave-2, Enclave-3 have a 128KB BRAM, whereas
Enclave-4 has a 32KB BRAM as their main memory. The peripherals
that belong to an enclave are connected through a dedicated AXI
Interconnect IP. Figure 4 shows the footprints of the four hardware
designs on the Z7-07S device. These �gures demonstrate the con-
�gurable nature of the BYOT�� hardware TCB and the isolation at
circuit level of the enclaves from each other and from the hardcore
processor. Figure 4(a) shows the hardware design with a debugger,
whereas all other designs do not have a debugger for the minimum
hardware TCB. Table 1 presents each enclave’s hardware TCB and
resource utilization on the Cora Z7-07S board with and without
a debugger IP. As the table shows, the debugger IP signi�cantly
increases the resource utilization of an enclave as it uses three DSP
slices, two BRAMs, etc. Since SSA-1 and SSA-4 do not use periph-
erals, Enclave-1 and Enclave-4 do not have any IOB. Figure 8 (in
Appendix) shows the block diagrams of the enclaves generated by
the H�������B������ for the four example SSAs.

7.4 Security Evaluation
Circuit-level Execution Isolation. As shown in Figure 8(e), the
two enclaves for SSA-4 are isolated at the circuit level from each
other and the hardcore system (processing_system7_0). The �g-
ure shows Enclave-1’s instruction memory controller (Enclave_1
_ILMB), data memory controller (Enclave_1_DLMB), and memory
generator (blk_mem_gen_0) are only connected to the Enclave_1
CPU, where Enclave_4_local_memory (the combination of two
memory controllers and one generator) is only connected to the
Enclave_4 CPU. To share a BRAM region for communication,
each enclave has another memory controller, i.e., share_axi_bram
_ctrl_0 and share_axi_bram_ctrl_0, which is connected to the
shared memory generator (share_blk_mem_gen_1).

Isolated Path to Peripherals. The hardware design in BYOT��
ensures isolated paths between SSAs and peripherals. As shown
in Figure 8(d), the I2S output audio peripheral (i2s_output_1) for
SSA-3 is only connected to its enclave but is isolated at the circuit
level from the hardcore system.

Hardware-based Attestation. Figure 5 shows the block dia-
gram of the SSA-1 with hardware-based attestation. Compared with
Figure 8(b), which uses software-based attestation, we can see the
H��A�� is connected to the BRAM of Enclave-1 (Enclave_1_exe
_memory).

Software TCB Size. Table 2 presents the size of the software
TCB for the four example SSAs and their corresponding F�������.
As the table shows, the size of F������� increases as the SSA gets
more complicated and needs more services. Nevertheless, the run-
time software TCB (SSA and F������� combined) of SSA-3, which
is a functional digital right management music player, has only
10,727 SLOC, representing a signi�cant software TCB reduction
from its counterpart implemented as a TrustZone, e.g., TF-M [69]
has over 117K SLOC, or SGX application, e.g., the Gramine library
OS [70] has 83K SLOC.

AsiaCCS’24, July 1–5, 2024, Singapore Md Armanuzzaman, Ahmad-Reza Sadeghi, and Ziming Zhao

(a) Enclave-1 w/ debugger (b) Enclave-1 wo/ debugger (c) Enclave-2 wo/ debugger (d) Enclave-3 wo/ debugger (e) Enclave-1 and Enclave-4 wo/
debugger

Figure 4: Resource footprints of the enclaves (software-based attestation pro�le) with MicroBlaze softcore CPUs for the example
SSAs on the Cora Z7-07S. The yellow and red portions represent CPU cells. The purple portion represents BRAM cells. The pink
rectangle represents I/O ports. In (d), the rectangle on top of the I/O ports represents an analog to digital conversion module.
The blue portions represent all other IPs, such as debugging modules, interconnects.

Table 1: Resource utilization of enclaves (software-based attestation pro�le) for the example SSAs on Cora Z7-07S

Enclave-1 Enclave-2 Enclave-3 Enclave-4
Resource w/ debugger w/o debugger w/ debugger w/o debugger w/ debugger w/o debugger w/ debugger w/o debugger
LUT 5,255 (36.5%) 2,232 (15.5%) 6,385 (44.3%) 3,291 (22.9%) 10,781 (74.9%) 6,778 (47.1%) 5,302 (36.8%) 3,130 (21.7%)

LUTRAM 419 (7.0%) 211 (3.5%) 507 (8.5%) 282 (4.7%) 725 (12.1%) 427 (7.1%) 319 (5.3%) 145 (2.4%)
Flip-�op 5,245 (18.2%) 2,259 (7.8%) 6,759 (23.5%) 37,64 (13.1%) 11,363 (39.5%) 7,721 (26.8%) 5,497 (19.1%) 3,014 (10.5%)
BRAM 18 (36.0%) 16 (32.0%) 34 (68.0%) 32 (64.0%) 48 (95.0%) 45.50 (91.0%) 28 (56.0%) 26 (52.0%)
DSP 3 (4.5%) 0 (0.0%) 3 (4.5%) 0 (0.0%) 3 (4.5%) 0 (0.0%) 3 (4.5%) 0 (0.0%)
IOB 0 (0.0%) 0 (0.0%) 6 (6.0%) 6 (6.0%) 28 (28.0%) 28 (28.0%) 0 (0.0%) 0 (0.0%)

Table 2: Size of the example SSAs’ software TCB

SSA Corresponding F�������
SLOC Bytes SLOC .text .data .bss Total

SSA-1 717 12,892 3,143 27,296 3,236 448 30,532
SSA-2 346 2,868 3,532 30,748 2,800 440 33,988
SSA-3 1,029 20,380 9,698 57,142 4,308 635 62,085
SSA-4 622 31,088 3,235 28,377 3,608 528 35,748

D
D

R

Enclave_1

MicroBlaze

INTERRUPT DLMB

ILMB

M_AXI_DP

M_AXI_IP

DEBUG

Clk

Reset

Enclave_1_exe_memory

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

rsta_busy

rstb_busy

Enclave_1_peripherals

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

S01_AXI

S02_AXI

M02_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

S01_ACLK

S01_ARESETN

S02_ACLK

S02_ARESETN

M02_ACLK

M02_ARESETN

FI
XE

D
_I

O

HW_ATT

BRAM_PORTA

Clk

M00_ARESETN

Reset

SYS_Rst

ARESETN

axi_bram_ctrl_0

AXI BRAM Controller

S_AXI

BRAM_PORTAs_axi_aclk

s_axi_aresetn

axi_intc_0

AXI Interrupt Controller

s_axi

interrupt
s_axi_aclk

s_axi_aresetn

intr[0:0]

clk_wiz_25M

Clocking Wizard

reset

clk_in1

clk_out1

locked

int_axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_o[0:0]
s_axi_aclk

s_axi_aresetn

Enclave_1_local_memory_unused

DLMB

ILMB

LMB_Clk

SYS_Rst

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

IIC_0

SPI_0

USBIND_0

M_AXI_GP0

S_AXI_GP0

M_AXI_GP0_ACLK

S_AXI_GP0_ACLK

IRQ_F2P[2:0]

FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

rst_ps7_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

xlconcat_2

Concat

In0[0:0]

In1[0:0]

In2[0:0]

dout[2:0]

xlconstant_0

Constant

dout[0:0] xlconstant_1

Constant

dout[0:0]

Figure 5: Block diagram of SSA-1 with the H��A��module
(hardware-based attestation pro�le).

Cold-boot Attacks on DRAM and BRAM. Cold-boot attacks
on DRAM are a serious problem, especially when an attacker has

(a) 0s 20�C (b) 5s 20�C (c) 15s 20�C (d) 20s 20�C (e) 30s 20�C

(f) 0s -18�C (g) 1m -18�C (h) 10m -18�C (i) 13m -18�C (j) BRAM ini-
tialization

Figure 6: Visualizing cold-boot attacks on DRAM and BRAM
on the same Z7-07S board. We loaded a bitmap image
(150⇥150 pixel; 90.1kB) on the DRAM and BRAM. The recon-
structed image from the fully decayed DRAM is red because
half of the cells are 1s and the other half are 0s. The image
from the BRAM is transparent because it is initialized to 0s.

physical access to the device. We evaluated the feasibility of cold-
boot attacks on DRAM and BRAM on the same board. In these
experiments, we loaded a bitmap image (150⇥150 pixel; 90.1kB) and
measured the DRAM decay at room temperature (20�C/68�F) and -
18�C/0�F after power reset (0 second) and losing power for di�erent
intervals, e.g., 30 seconds, 13 minutes. We dumped the content of
BRAM, for which the Xilinx Zynq-7000 FPGA has a non-bypassable
hardware initialization mechanism after power up to clear all the
bits to 0s. As we discussed in §6, even if the BRAM is not initialized,
cold-boot attacks on it are more di�cult than on DRAM. Figure 6

Building Your Own Trusted Execution Environments Using FPGA AsiaCCS’24, July 1–5, 2024, Singapore

Table 3: Performance Evaluation of F������� on MicroBlaze CPU (Software-based attestation; Time in Milliseconds; Size in
Bytes). The experiments demonstrate that SSA-3 e�ciently verify, decrypt, and play 48KHz WAV on a low-end softcore CPU.

Binary Input Output Loading Decryption Integrity and pre-execution post-execution Cleaning Suspend Restore
size size size authenticity attestation attestation up and and

veri�cation export execute
SSA-1 12,892 64 64 1.39 2784.56 118.54 153.94 154.79 0.54 3694.55 3609.65
SSA-2 2,596 N/A N/A 0.30 579.11 29.15 30.90 30.90 0.11 741.71 729.69
SSA-3 20,152 128 132 2.17 4414.32 185.30 258.30 260.50 0.90 5787.97 5638.76

Table 4: Performance evaluation of Embench-IoT on softcore
MicroBlaze CPU (Version 10.0, 100MHz, no Cache, no FPU)
and hardcore Cortex-M4 CPU (16MHz, no Cache, no FPU,
o�cially reported performance from [68]) in Milliseconds

Application Description M4 [68] MicroBlaze
aha-mont64 Modulo generator 4,004 501
crc32 32 bit error detector 4,010 193
hu�bench Data compressor 4,120 111
minver Floating point matrix in-

version
3,998 327

nettle-aes Low level AES library 4,026 245
nsichneu Computes permutation 4,001 237
primecount Prime counter n/a 193
sglib-combined Sort, search, and query on

array, list, and tree
3,981 189

slre Regex matching 4,010 113
statemate Car window lift control 4,001 139
tar�nd Archive �le �nder n/a 163
ud Matrix factorization 3,999 343

Geometric Mean 4,015 208

visualizes the cold-boot attack results, which con�rms cold-boot
attacks on DRAM are feasible but not on BRAM.

7.5 Performance and Power Evaluation
We evaluate the performance of the low-end MicroBlaze-powered
enclaves, which provides a lower-bound performance estimation
of available softcore CPUs. We evaluate the performance using 12
Embench-IoT benchmark applications [71] and evaluate the BY�
OT�� software performance by measuring the time cost of di�erent
F������� operations.

Benchmark Performance Evaluation. To show the perfor-
mance of the MicroBlaze softcore compared to the Cortex-M4
hardcore, we use 12 applications from the Embench-IoT bench-
marks [71]. As Table 4 shows, the applications run comparatively
faster on the low-end MicroBlaze softcore CPU than the hardcore
Cortex-M4. For better performance, users can choose more ad-
vanced softcore CPUs.

F������� Performance. We evaluate the time F�������
spends on the loading, decrypting, integrity and authenticity veri�-
cation, attestation, cleaning up, suspending, and restoring opera-
tions of three SSAs. As Table 3 shows, the time spent by F�������
is linear to the size of the SSA and its data. To copy the protected
SSA and its input from DRAM to BRAM, F������� running on the
Z7-07S spends around 1.07 ms for every 10,000 bytes. To decrypt the
protected SSA and its data using 256-bit CBC mode AES, F�������

spends around 2182 ms for every 10,000 bytes. The integrity and au-
thenticity veri�cation costs around 93.43 ms for every 10,000 bytes.
The BLAKE-based pre-execution and post-execution attestations
cost around 124.77 ms for every 10,000 bytes. Cleaning up BRAM
takes around 0.45 ms for every 10,000 bytes. The SHA512-HMAC
and AES 256-bit with CBC mode based suspending and restoring
cost roughly 2834 ms for every 10,000 bytes.

Power Consumption. The Xilinx Vivado (2017.4) tool provides
the estimated power consumption of the hardcore CPU and exam-
ple enclaves. The 667MHz Cortex-A9 hardcore CPU uses around
1,255 mW. The SSA-1 enclave, which includes a 100MHz MicroB-
laze, BRAM, etc., uses 66 mW. The SSA-2 consumes 72 mW, SSA-3
consumes 205 mW, and SSA-4 consumes 117 mW. The hardware-
based attestation pro�le of SSA-1 consumes 101 mW. For reference,
a 16MHz Cortex-M4 consumes 0.66 mW [72].

8 RELATEDWORK
Many software- or hardware-based solutions have been proposed
to address one or more limitations of existing TEEs. Among them,
TEEOD [83] is most related. Compared to TEEOD, BYOT�� o�ers
additional security features, such as trust bootstrap, software- and
hardware-based attestation. Table 5 highlights the advantages of
BYOT�� and compares it to related work. Moreover, we discuss
previous e�orts on addressing the single TEE issue, isolated I/O
paths, and the limitations of other hardware-based solutions.

The Single TEE Issue of TrustZone. vTZ [80] provides each
virtual machine with a virtualized TEE by running a monitor within
the secure world. S�������� [20] utilizes the memory access con-
troller to provide multi-domain isolation. TrustICE [79] creates
multiple computing environments in the normal domain and runs a
monitor in the secure world. uTango [81] use the secure attribution
unit of Cortex-M to create multiple secure execution environments.
On RISC-V, KeyStone [77] utilizes the Physical Memory Protection
(PMP) feature to create multiple enclaves. The TEE and REE in
these solutions time-share the CPU and other hardware resources,
resulting in side-channel attacks.

Isolated I/O Paths and Mitigating Side-channel Attacks.
C��� [3] enables the exclusive assignment of system resources
to single enclaves. Composite Enclaves [14] builds on top of Key-
Stone [77] and extends the TEE to several hardware components.
HECTOR-V [21] uses a dedicated processor as a TEE with con-
�gurable peripheral permissions. C���, Composite Enclaves, and
HECTOR-V rely on the PMP feature of RISC-V. SGXIO [61] presents
a hypervisor-based trusted path architecture for SGX. SGX-FPGA [76]

AsiaCCS’24, July 1–5, 2024, Singapore Md Armanuzzaman, Ahmad-Reza Sadeghi, and Ziming Zhao

Projects Bene�ts

U
nd

er
ly
in
g
H
ar
dw

ar
e
Pr
im

iti
ve

Cu
st
om

iz
ab
le
CP

U
an
d
M
em

or
y
(G
1)

Cu
st
om

iz
ab
le
Pe
rip

he
ra
lC

on
ne
ct
io
ns

(G
1)

Re
m
ot
e
H
ar
dw

ar
e
A
tte

st
at
io
n
(G
2)

Re
m
ot
e
So
ftw

ar
e
A
tte

st
at
io
n
(G
2)

Po
st
-E
xe
cu
tio

n
A
tte

st
at
io
n
(G
2)

M
ul
tip

le
TE

Es
(G
4)

Ca
ch
e
Si
de
-c
ha
nn

el
A
tta

ck
Re

si
st
an
t(
G
5)

Co
nc
ur
re
nt

TE
E
an
d
RE

E
Ex

ec
ut
io
n
(G
5)

TE
E
w
ith

D
ed
ic
at
ed

H
ar
dw

ar
e
(G
5,
G
6)

A
llo

w
in
g
fo
rM

in
im

um
So
ftw

ar
e
TC

B
(G
8)

Co
ld
-b
oo

tA
tta

ck
Re

si
st
an
t

D
ep
lo
ya
bl
e
on

Co
m
m
od

ity
D
ev
ic
es

Flickr [73] S/T 3 3 3 3
TrustVisor [74] S/T 3 3 3 3
Haven [75] X 3 3 3 3
SGXIO [61] X+H 3 3 3
SGX-FPGA [76] X+F 3 3 3 3 3
KeyStone [77] R 3 3 3
Sanctum [78] R 3 3 3 3 3
C��� [3] R 3 3 3 3
Composite Encl. [14] R 3 3 3 3 3
S�������� [20] A 3 3 3 3
TrustICE [79] A 3 3 3 3
vTZ [80] A+H 3 3
Ambassy [56] A+F � 3 3 3 3 3 � � 3 3
uTango [81] M 3 3 3
Graviton [22] G 3 3 3 3
StrongBox [82] G 3 3 3 3 3
HECTOR-V [21] N 3 3 3 3 3 3 3
TEEOD [83] F 3 3 3 3 3 3 3
Sancus [84] N 3 3
SecureBlue++ [85] - 3 3
TrustLite [86] N 3 3 3
SMART [87] N 3 3
MyTEE [88] H 3 3 3
MeetGo [89] F � 3 � 3 � 3 � � 3 3

BYOT�� F 3 3 3 3 3 3 3 3 3 3 3 3

S: AMD Secure Virtual Machine extension, T: Intel Trusted eXecution
Technology, H: Hypervisor, A: Arm Cortex-A TrustZone, M: Arm Cortex-
MTrustZone, X: Intel SGX, F: FPGA, R: RISC-V, G: GPU, N: New hardware
design. �: not applicable.

Table 5: Comparing the security goals and bene�ts ofBYOT��
with other software- and hardware-based TEE solutions

builds a secure path between CPU and FPGA. To eliminate side-
channel attacks, Sanctum [78] combines invasive hardware modi�-
cations with a trusted software monitor on RISC-V.

Building TEEs with Other Hardware. Graviton [22] and
StrongBox [82] o�oad security-sensitive code and data to a GPU.
Ambassy [56] and MeetGo [89] use FPGA to construct TEEs, but
they do not include softcore CPUs. Dedicated processor solutions,
such as Google Titan [90], Samsung eSE [91], and Apple SEP [92],
use external connections between the REE and TEE, making them
vulnerable to physical probing attacks [21]. BYOT�� is also in-
spired by other isolated execution environment solutions, including
Flickr [73], TrustVisor [74], and Haven [75].

9 LIMITATIONS AND DISCUSSIONS
TOCTOU. The presented hardware-based attestation is susceptible
to TOCTOU attacks, which can be addressed by implementing
SACHa [93] or RATA [94] on top of BYOT��. SACHa presents a
self-attestation framework of FPGA without a trusted hardware
module, while RATA addresses the TOCTOU attacks by using a
hardware component to provide the context of software.

Low Maximum Clock Frequency and Power Consump-
tion of FPGA. Even though softcore CPUs on FPGA have a low
maximum clock frequency and their power consumption is always
higher than hardcore CPUs with comparable performance, our ex-
periments on a very low-end SoC FPGA device in §7 demonstrate
the practicality of BYOT��. As the gap between FPGAs and Appli-
cation Speci�c Integrated Circuits (ASICs) keeps reducing [95] and
vendors integrate FPGAs into products, e.g., AMD EPYC CPUs, it
is feasible to deploy BYOT�� on end devices.

Preventing Replay Attacks on Encrypted SSAs with Refer-
ence Numbers. The current design of the SEB in SSAs is vulnerable
to replay attacks. However, this issue can be e�ectively addressed
by including a pair of unique reference numbers for the communi-
cating parties. These reference numbers act as identi�ers that help
prevent attackers from intercepting and replaying the messages.

10 CONCLUSION
Even though hardware-assisted TEEs have been widely adopted,
they su�er from several issues that make them untrustworthy and
ine�ective, including static and �xed hardware TCBs and a lack
of dynamic attestation of the hardware. In this paper, we present
BYOT��, a framework for building multiple TEEs on-demand with
con�gurable hardware and software TCBs, utilizing commodity
SoC FPGA devices. BYOT�� establishes a dynamic root of trust
that allows for full isolation and untampered execution of security-
sensitive applications in enclaves from pre-existing software on
the hardcore system. In BYOT��, enclaves, which include softcore
CPUs, memory, and peripherals, are created on the FPGA, and
the BYOT�� �rmware provides necessary software libraries for
the applications to use. Additionally, BYOT�� o�ers software- and
hardware-based attestation mechanisms to verify the hardware and
software stacks. We implemented BYOT�� on the Xilinx FPGA, and
our evaluation results on the low-end Zynq-7000 system for bench-
mark applications and example SSAs demonstrate the e�ectiveness
and performance of BYOT��.

ACKNOWLEDGMENT
We thank Paul Ratazzi, Zhenhua Wu, Kai Ni, and Arnob Paul for
the discussions while this work was in progress. We thank Sandro
Pinto for bringing TEEOD to our attention. We also thank the
organizers of MITRE eCTF 2020 for inspiring this research. This
material is based upon work supported in part by a National Science
Foundation (NSF) grant (2237238), a National Centers of Academic
Excellence in Cybersecurity grant (H98230-22-1-0307), and the Air
Force Visiting Faculty Research Program. Any opinions, �ndings,
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily re�ect the views of
United States Government or any agency thereof.

Building Your Own Trusted Execution Environments Using FPGA AsiaCCS’24, July 1–5, 2024, Singapore

REFERENCES
[1] V. Costan and S. Devadas, “Intel SGX Explained.,” IACR Cryptol. ePrint Arch.,

2016.
[2] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive survey,”

ACM Computing Surveys (CSUR), 2019.
[3] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R. Sadeghi,

and E. Stapf, “CURE: A Security Architecture with CUstomizable and Resilient
Enclaves,” in USENIX Security Symposium, 2021.

[4] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen,
“Hypervision across worlds: Real-time kernel protection from the arm trustzone
secure world,” in ACM Conference on Computer and Communications Security
(CCS), 2014.

[5] X. Ge and T. Jaeger, “Sprobes: Enforcing Kernel Code Integrity on the TrustZone
Architecture,” in Mobile Security Technologies Workshop (MoST), 2014.

[6] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’kee�e, M. L. Stillwell, et al., “SCONE: Secure linux
containers with intel SGX,” in USENIX symposium on Operating Systems Design
and Implementation (OSDI), 2016.

[7] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library OS for
unmodi�ed applications on SGX,” in USENIX Annual Technical Conference (ATC),
2017.

[8] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM TrustZone to build a
trusted language runtime for mobile applications,” in International conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2014.

[9] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted
cloud with haven,” ACM Transactions on Computer Systems (TOCS), 2015.

[10] J. Lind, C. Priebe, D. Muthukumaran, D. O’Kee�e, P.-L. Aublin, F. Kelbert, T. Rei-
her, D. Goltzsche, D. Eyers, R. Kapitza, et al., “Glamdring: Automatic application
partitioning for intel SGX,” in USENIX Annual Technical Conference (ATC), 2017.

[11] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich, “VC3: Trustworthy data analytics in the cloud using SGX,”
in IEEE symposium on Security and Privacy (S&P), 2015.

[12] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding the Pre-
vailing Security Vulnerabilities in TrustZone-assisted TEE Systems,” in IEEE
symposium on Security and Privacy (S&P), 2020.

[13] M. Gross, N. Jacob, A. Zankl, and G. Sigl, “Breaking trustzone memory isolation
throughmalicious hardware on amodern fpga-soc,” inACMWorkshop on Attacks
and Solutions in Hardware Security Workshop (ASHES), 2019.

[14] M. Schneider, A. Dhar, I. Puddu, K. Kostiainen, and S. Capkun, “Composite
Enclaves: Towards Disaggregated Trusted Execution,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022.

[15] N. Zhang, K. Sun, D. Shands,W. Lou, and Y. T. Hou, “TruSpy: Cache Side-Channel
Information Leakage from the Secure World on ARM Devices,” IACR Cryptology
ePrint Archive, 2016.

[16] H. Cho, P. Zhang, D. Kim, J. Park, C.-H. Lee, Z. Zhao, A. Doupé, and G.-J. Ahn,
“Prime+Count: Novel cross-world covert channels on arm trustzone,” in Annual
Computer Security Applications Conference (ACSAC), 2018.

[17] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi,
“Software grand exposure: SGX cache attacks are practical,” in USENIXWorkshop
on O�ensive Technologies, 2017.

[18] X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented �ush-reload side channels on
arm and their implications for android devices,” in ACM Conference on Computer
and Communications Security (CCS), 2016.

[19] M. Gutierrez, Z. Zhao, A. Doupé, Y. Shoshitaishvili, and G.-J. Ahn, “Cachelight:
Defeating the cachekit attack,” inWorkshop on Attacks and Solutions in Hardware
Security, 2018.

[20] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANCTUARY:
ARMing TrustZone with User-space Enclaves.,” in Network and Distributed
System Security Symposium (NDSS), 2019.

[21] P. Nasahl, R. Schilling, M. Werner, and S. Mangard, “HECTOR-V: A heteroge-
neous CPU architecture for a secure RISC-V execution environment,” in ACM
Asia Conference on Computer and Communications Security (AsiaCCS), 2021.

[22] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution environments
on gpus,” inUSENIX symposium on Operating Systems Design and Implementation
(OSDI), 2018.

[23] J. Wilson, “AMD will infuse EPYC CPUs with Xilinx-based FPGA AI Engines,
starting as early as 2023.” https://wccftech.com/amd-will-infuse-epyc-cpus-
with-xilinx-based-fpga-ai-engines-starting-as-early-as-2023/, -.

[24] “Project Catapult.” https://www.microsoft.com/en-us/research/project/project-
catapult/.

[25] “Project Brainwave.” https://www.microsoft.com/en-us/research/project/projec
t-brainwave/.

[26] “Amazon EC2 documentation.” https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/DocumentHistory.html, -.

[27] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-
based Accelerator Design for Deep Convolutional Neural Networks,” in ACM

International Symposium on Field-Programmable Gate Arrays (FPGA), 2015.
[28] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo, and

Y. Cao, “Throughput-optimized opencl-based fpga accelerator for large-scale
convolutional neural networks,” in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2016.

[29] Z. Li, C. Ding, S. Wang, W. Wen, Y. Zhuo, C. Liu, Q. Qiu, W. Xu, X. Lin, X. Qian,
et al., “E-rnn: Design optimization for e�cient recurrent neural networks in
fpgas,” in IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), 2019.

[30] W. N. Chelton and M. Benaissa, “Fast elliptic curve cryptography on fpga,” IEEE
transactions on very large scale integration (VLSI) systems, 2008.

[31] R. Elkhatib, R. Azarderakhsh, and M. Moza�ari-Kermani, “High-performance
fpga accelerator for sike,” IEEE Transactions on Computers, 2021.

[32] M. Lavasani, H. Angepat, and D. Chiou, “An fpga-based in-line accelerator for
memcached,” IEEE Computer Architecture Letters, 2013.

[33] “Open Cores.” https://opencores.org/.
[34] “VexRiscv.” https://github.com/SpinalHDL/VexRiscv, 2022.
[35] “Neo430.” https://github.com/stnolting/neo430, 2020.
[36] “Microwatt.” https://github.com/antonblanchard/microwatt.
[37] “A2I.” https://github.com/openpower-cores/a2i.
[38] “A2O.” https://github.com/openpower-cores/a2o.
[39] “OpenSPARC T1 Softcore Processor.” https://www.oracle.com/servers/technol

ogies/opensparc-t1-page.html.
[40] “libreSOC.” https://libre-soc.org/.
[41] R. Lysecky and F. Vahid, “Design and implementation of a microblaze-based

warp processor,” ACM Transactions on Embedded Computing Systems (TECS),
2009.

[42] “Intel NIOS softcore.” https://www.intel.com/content/www/us/en/products/det
ails/fpga/nios-processor/, 2020.

[43] E. Matthews and L. Shannon, “Taiga: A new risc-v soft-processor framework
enabling high performance cpu architectural features,” in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL), 2017.

[44] C. Heinz, Y. Lavan, J. Hofmann, and A. Koch, “A catalog and in-hardware
evaluation of open-source drop-in compatible risc-v softcore processors,” in
International Conference on ReConFigurable Computing and FPGAs (ReConFig),
2019.

[45] V. Sieh, O. Tschache, and F. Balbach, “Verify: Evaluation of reliability using vhdl-
models with embedded fault descriptions,” in IEEE International Symposium on
Fault Tolerant Computing, 1997.

[46] P. T. Breuer, C. K. Delgado, A. L. Marin, N. Martinez Madrid, and L. Sanchez Fer-
nandez, “A re�nement calculus for the synthesis of veri�ed hardware de-
scriptions in vhdl,” ACM Transactions on Programming Languages and Systems
(TOPLAS), 1997.

[47] Xilinx, “Zynq-7000 SoC Technical Reference Manual.” https://www.xilinx.com/s
upport/documentation/user_guides/ug585-Zynq-7000-TRM.pdf, 2021.

[48] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we remember:
cold-boot attacks on encryption keys,” Communications of the ACM (CACM),
2009.

[49] A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber, W. P. Burleson, and K. Fu,
“TARDIS: Time and Remanence Decay in SRAM to Implement Secure Protocols
on Embedded Devices without Clocks,” in USENIX Security Symposium, 2012.

[50] B. Parno, J. M. McCune, and A. Perrig, Bootstrapping trust in modern computers.
Springer Science & Business Media, 2011.

[51] M. Ender, A. Moradi, and C. Paar, “The unpatchable silicon: A full break of the
bitstream encryption of xilinx 7-series fpgas,” in USENIX Security Symposium,
2020.

[52] “Arm Platform Security Architecture Security Model.” https://armkeil.blob.core.
windows.net/developer/Files/pdf/PlatformSecurityArchitecture/Architect/D
EN0079-PSA_SM_ALPHA-02.pdf.

[53] “PSA Attestation API .” https://armkeil.blob.core.windows.net/developer/Files/
pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-
1.0.1-2.pdf.

[54] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang, A. Bianchi,
Y. R. Choe, C. Kruegel, and G. Vigna, “BOOMERANG: Exploiting the Semantic
Gap in Trusted Execution Environments,” in Network and Distributed System
Security Symposium (NDSS), 2017.

[55] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell, “Design and veri�ca-
tion of the arm con�dential compute architecture,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pp. 465–484, 2022.

[56] D. Hwang, S. Yeleuov, J. Seo, M. Chung, H. Moon, and Y. Paek, “Ambassy: A
Runtime Framework to Delegate Trusted Applications in an ARM/FPGA Hybrid
System,” IEEE Transactions on Mobile Computing (TMC), 2021.

[57] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel attacks,” in
IEEE symposium on Security and Privacy (S&P), 2018.

[58] Xilinx, “Xilinx Vivado Toolkit.” https://www.xilinx.com/products/design-
tools/vivado.html.

AsiaCCS’24, July 1–5, 2024, Singapore Md Armanuzzaman, Ahmad-Reza Sadeghi, and Ziming Zhao

[59] Intel, “Intel Quartus Prime Pro Edition Design Software.” https://www.intel.co
m/content/www/us/en/software-kit/706104/intel-quartus-prime-pro-edition-
design-software-version-21-4-for-linux.html?

[60] T. Abera, R. Bahmani, F. Brasser, A. Ibrahim, A.-R. Sadeghi, and M. Schunter,
“DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous
Systems.,” in Network and Distributed System Security Symposium (NDSS), 2019.

[61] S. Weiser and M. Werner, “Sgxio: Generic trusted i/o path for intel sgx,” in ACM
on Conference on Data and Application Security and Privacy (CODASPY), 2017.

[62] Xilinx, “MicroBlaze.” https://www.xilinx.com/products/design-tools/microblaze
.html, 2018.

[63] Xilinx, “7 Series FPGAs Memory Resources..” https://www.xilinx.com/support/d
ocumentation/user_guides/ug473_7Series_Memory_Resources.pdf, 2019.

[64] I. Giechaskiel, K. B. Rasmussen, and K. Eguro, “Leaky wires: Information leakage
and covert communication between FPGA long wires,” in Asia Conference on
Computer and Communications Security (AsiaCCS), 2018.

[65] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement, D. Hol-
comb, and R. Tessier, “FPGA side channel attacks without physical access,” in
Annual international symposium on Field-Programmable Custom Computing
Machines (FCCM), 2018.

[66] “Pmod I2S2: Stereo Audio Input andOutput.” https://store.digilentinc.com/pmod-
i2s2-stereo-audio-input-and-output/, 2018.

[67] “BLAKE2—fast secure hashing.” https://www.blake2.net/, 2015.
[68] “Embench IoT benchmark Cortex-M4 data.” https://gitlab.inria.fr/mescoute/e

mbench-iot/-/tree/76e887fac691d3d3f42cd32636b347bf2626036b/doc.
[69] Linaro, “Trusted Firmware M (TFM) v1.3.0.” https://git.trustedfirmware.org/TF-

M/trusted-�rmware-m.git.
[70] “Gramine Project.” https://github.com/gramineproject/gramine.
[71] “Embench IoT.” https://github.com/embench/embench-iot, 2021.
[72] ARM, “Arm Cortex-M4 Processor Datasheet.” https://developer.arm.com/docu

mentation/102832, 2020.
[73] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki, “Flicker: An

execution infrastructure for TCB minimization,” in European Conference on
Computer Systems (EuroSys), 2008.

[74] J. M.McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig, “TrustVisor:
E�cient TCB reduction and attestation,” in IEEE symposium on Security and
Privacy (S&P), 2010.

[75] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from an Un-
trusted Cloud with Haven,” in USENIX symposium on Operating Systems Design
and Implementation (OSDI), 2014.

[76] K. Xia, Y. Luo, X. Xu, and S. Wei, “Sgx-fpga: Trusted execution environment for
cpu-fpga heterogeneous architecture,” in IEEE Design Automation Conference
(DAC), 2021.

[77] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An Open
Framework for Architecting Trusted Execution Environments,” in European
Conference on Computer Systems (EuroSys), 2020.

[78] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware extensions
for strong software isolation,” in USENIX Security Symposium, 2016.

[79] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice: Hardware-assisted
isolated computing environments on mobile devices,” in Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), 2015.

[80] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz: Virtualizing ARM
trustzone,” in USENIX Security Symposium, 2017.

[81] D. Oliveira, T. Gomes, and S. Pinto, “utango: an open-source tee for iot devices,”
IEEE Access, 2022.

[82] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan, Z. He, J. Cao,
et al., “Strongbox: A gpu tee on arm endpoints,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022.

[83] C. R. Sergio Pereira, David Cerdeira and S. Pinto, “Towards a Trusted Execution
Environment via Recon�gurable FPGA,” arXiv preprint arXiv:2107.03781, 2021.

[84] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens,
B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus: Low-cost trustworthy
extensible networked devices with a zero-software trusted computing base,” in
2USENIX Security Symposium, 2013.

[85] R. Boivie and P. Williams, “Secureblue++: Cpu support for secure execution,”
IBM Research Division, 2012.

[86] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite: A security
architecture for tiny embedded devices,” in European Conference on Computer
Systems, 2014.

[87] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: secure and minimal
architecture for (establishing dynamic) root of trust.,” in Network and Distributed
System Security Symposium (NDSS), 2012.

[88] S. Han and J. Jang, “Mytee: Own the trusted execution environment on embedded
devices,”

[89] H. Oh, K. Nam, S. Jeon, Y. Cho, and Y. Paek, “MeetGo: A Trusted Execution
Environment for Remote Applications on FPGA,” IEEE Access, 2021.

[90] S. Johnson, D. Rizzo, P. Ranganathan, J. McCune, and R. Ho, “Titan: enabling a
transparent silicon root of trust for Cloud,” in Hot Chips: A Symposium on High
Performance Chips, 2018.

[91] Samsung, “eSE Safeguard against digital attacks..” https://www.samsung.com/
semiconductor/security/ese/, 2020.

[92] Apple, “Security enclave processor for a system on a chip.” https://patents.goog
le.com/patent/US8832465, 2020.

[93] J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens, “SACHa: Self-attestation
of con�gurable hardware,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2019.

[94] I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik, “On the
TOCTOU problem in remote attestation,” in ACM Conference on Computer and
Communications Security, 2021.

[95] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” IEEE Transac-
tions on computer-aided design of integrated circuits and systems, 2007.

[96] Xilinx, “MicroBlaze Debug Modulev3.2.” https://www.xilinx.com/support/doc
umentation/ip_documentation/mdm/v3_2/pg115-mdm.pdf, 2021.

[97] Xilinx, “LogiCORE IP Product Guide.” https://www.xilinx.com/support/docum
entation/ip_documentation/axi_timer/v2_0/pg079-axi-timer.pdf, 2016.

[98] Xilinx, “AXI GPIO v2.0.” https://www.xilinx.com/support/documentation/ip_do
cumentation/axi_gpio/v2_0/pg144-axi-gpio.pdf, 2016.

[99] Xilinx, “AXI DMA v7.1.” https://www.xilinx.com/support/documentation/ip_do
cumentation/axi_dma/v7_1/pg021_axi_dma.pdf, 2019.

[100] Xilinx, “AXI4-Stream FIFO v4.1.” https://www.xilinx.com/support/documentati
on/ip_documentation/axi_�fo_mm_s/v4_1/pg080-axi-�fo-mm-s.pdf, 2016.

[101] Xilinx, “XADC Wizard v3.3.” https://china.xilinx.com/support/documentation/i
p_documentation/xadc_wiz/v3_3/pg091-xadc-wiz.pdf, 2016.

A EXPERIMENT DEVICE

(a) Top view

(b) Bottom view

Figure 7: The Z7-07S board with a Pmod audio module for
experiments and evaluation: (1) an LED as an Enclave-2 pe-
ripheral used by SSA-2, (2) a button as anEnclave-2 peripheral
used by SSA-2, (3) the Zynq-7000 SoC with a hardcore CPU
and FPGA, (4) a Pmod port and the I2S2 stereo audio input
and output device as an Enclave-3 peripheral used by SSA-3,
(5) the on-board USB JTAG/UART for debugging and terminal
output, (6) the SD card slot.

Figure 7 shows the top and bottom view of the Cora Z7-07S
development board with a single-core 667MHz Arm Cortex-A9

Building Your Own Trusted Execution Environments Using FPGA AsiaCCS’24, July 1–5, 2024, Singapore

processor, a Xilinx Zynq-7000 FPGA, and the connected Pmod I2S2
audio device.

B AUTOMATICALLY GENERATED
HARDWARE DESIGN OF THE EXAMPLE
SSAS

Figure 8(a) shows the hardware for SSA-1 with a MicroBlaze Debug-
ging Module (MDM) [96] to help the developers debug SSAs. A mas-
ter interface of MDM is also connected to the ps7_axi_periph to
enable debugging from the hardcore system side. Figure 8(b) shows
the same hardware con�guration without the debugging module.
As shown in Figure 8(c), the hardware design of SSA-2 includes two
peripherals that are only connected to the FPGA. A pulse width
modulation IP [97] connects the RGB_LED ports, and an AXI GPIO
IP [98] connects the button ports to the mb_axi_interconnect_0

interconnect. As shown in Figure 8(d), the hardware for SSA-3
includes several more IPs for di�erent functionality. An I2S trans-
mitter RTL (SPI) is added to interact with the Pmod I2S2 module
Codec module. Additionally, an AXI direct memory access IP [99]
with BRAM and an AXI stream data FIFO IP [100] to o�oad audio
data streaming computation from Microblaze are inserted by the
H�������B������. An ADC module for reading voltages, which
is used for performance monitoring [101], is also connected. Fig-
ure 8(e) represents the hardware of SSA-4 with two enclaves. Both
the enclaves have their own BRAM, 128KB, and 32KB respectively.
Enclave-1 has a shared DRAM with Zynq processor as SEB for
communication, while Enclave-2 does not have any SEB with Zynq.
Instead of inter enclave communication, one 8KB BRAM is shared
between Enclave-1 and Enclave-2 without the Zynq processing
system access.

AsiaCCS’24, July 1–5, 2024, Singapore Md Armanuzzaman, Ahmad-Reza Sadeghi, and Ziming Zhao

CTEE_0

MicroBlaze

INTERRUPT DLMB

ILMB

M_AXI_DP

M_AXI_IP

DEBUG

Clk

Reset

CTEE_0_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

D
D

R

F
IX

E
D

_
IO

axi_intc_0

AXI Interrupt Controller

s_axi

interrupt
s_axi_aclk

s_axi_aresetn

intr[0:0]

clk_wiz_25M

Clocking Wizard

reset

clk_in1

clk_out1

locked

int_axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_o[0:0]
s_axi_aclk

s_axi_aresetn

mb_axi_mem_interconnect_0

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

S01_AXI

S02_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

S01_ACLK

S01_ARESETN

S02_ACLK

S02_ARESETN

mdm_0

MicroBlaze Debug Module (MDM)

S_AXI M_AXI

LMB_0

MBDEBUG_0

S_AXI_ACLK

S_AXI_ARESETN

M_AXI_ACLK

M_AXI_ARESETN

Interrupt

Debug_SYS_Rst

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

IIC_0

SPI_0

USBIND_0

M_AXI_GP0

S_AXI_GP0

M_AXI_GP0_ACLK

S_AXI_GP0_ACLK

IRQ_F2P[1:0]

FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

rst_ps7_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

xlconcat_2

Concat

In0[0:0]

In1[0:0]
dout[1:0]

xlconstant_0

Constant

dout[0:0]

xlconstant_1

Constant

dout[0:0]

Enclave_1_local_memory

Enclave_1

Enclave_1_peripherals

(a) Hardware for SSA-1 with a Debugging Module

CTEE_0

MicroBlaze

INTERRUPT
DLMB

ILMB

M_AXI_DP

M_AXI_IP

Clk

Reset

CTEE_0_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

D
D

R

F
IX

E
D

_
IO

axi_intc_0

AXI Interrupt Controller

s_axi

interrupt
s_axi_aclk

s_axi_aresetn

intr[0:0]

clk_wiz_25M

Clocking Wizard

reset

clk_in1

clk_out1

locked

int_axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_o[0:0]
s_axi_aclk

s_axi_aresetn

mb_axi_mem_interconnect_0

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

S01_AXI

S02_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

S01_ACLK

S01_ARESETN

S02_ACLK

S02_ARESETN

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

IIC_0

SPI_0

USBIND_0

M_AXI_GP0

S_AXI_GP0

M_AXI_GP0_ACLK

S_AXI_GP0_ACLK

IRQ_F2P[1:0]

FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

rst_ps7_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

xlconcat_2

Concat

In0[0:0]

In1[0:0]
dout[1:0]

xlconstant_0

Constant

dout[0:0]

xlconstant_1

Constant

dout[0:0]

Enclave_1

Enclave_1_local_memory

Enclave_1_peripherals

(b) Hardware for SSA-1 without a Debugging Module

CTEE_0

MicroBlaze

INTERRUPT
DLMB

ILMB

M_AXI_DP

M_AXI_IP

Clk

Reset

D
D

R

F
IX

E
D

_
IO

axi_gpio_button

AXI GPIO

S_AXI GPIO

gpio_io_i[1:0]s_axi_aclk

s_axi_aresetn ip2intc_irpt

axi_intc_0

AXI Interrupt Controller

s_axi

interrupt
s_axi_aclk

s_axi_aresetn

intr[1:0]

b
tn

s_
2
b
its

clk_wiz_25M

Clocking Wizard

reset

clk_in1

clk_out1

locked

int_axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_o[0:0]
s_axi_aclk

s_axi_aresetn

mb_axi_mem_interconnect_0

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

S01_AXI

M02_AXI

M03_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

S01_ACLK

S01_ARESETN

M02_ACLK

M02_ARESETN

M03_ACLK

M03_ARESETN

microblaze_1_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

proc_sys_reset_0

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

IIC_0

SPI_0

USBIND_0

M_AXI_GP0

S_AXI_GP0

M_AXI_GP0_ACLK

S_AXI_GP0_ACLK

IRQ_F2P[1:0]

FCLK_CLK0

FCLK_RESET0_N ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

rgb_PWM_0

PWM_v2.0

PWM_AXI

pwm[5:0]pwm_axi_aclk

pwm_axi_aresetn

rg
b
_
le

d
[5

:0
]

rst_ps7_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

xlconcat_0

Concat

In0[0:0]

In1[0:0]
dout[1:0]

xlconcat_2

Concat

In0[0:0]

In1[0:0]
dout[1:0]

xlconstant_0

Constant

dout[0:0]

xlconstant_1

Constant

dout[0:0]

Enclave_1 Enclave_1_local_memory

Enclave_1_local_memmory

(c) Hardware for SSA-2 without a Debugging Module

CTEE_0

MicroBlaze

INTERRUPT
DLMB

ILMB

M_AXI_DP

M_AXI_IP

Clk

Reset

CTEE_0_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

D
D

R

F
IX

E
D

_
IO

axi_dma_0

AXI Direct Memory Access

S_AXI_LITE M_AXI_MM2S

M_AXIS_MM2Ss_axi_lite_aclk

m_axi_mm2s_aclk

axi_resetn

mm2s_prmry_reset_out_n

mm2s_introut

axi_intc_0

AXI Interrupt Controller

s_axi

interrupt
s_axi_aclk

s_axi_aresetn

intr[0:0]

axis_data_fifo_0

AXI4-Stream Data FIFO

S_AXIS
M_AXIS

m_axis_tready

m_axis_tdata[15:0]
s_axis_aresetn

m_axis_aresetn

s_axis_aclk

m_axis_aclk

axis_data_count[31:0]

axis_wr_data_count[31:0]

axis_rd_data_count[31:0]

clk_wiz_25M

Clocking Wizard

reset

clk_in1

clk_out1

locked

dma_axi_bram_ctrl_1

AXI BRAM Controller

S_AXI

BRAM_PORTAs_axi_aclk

s_axi_aresetn

dma_blk_mem_gen_1

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

rsta_busy

rstb_busy

fifo_count_axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_i[31:0]
s_axi_aclk

s_axi_aresetn

int_axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_o[0:0]
s_axi_aclk

s_axi_aresetn

i2s_output_1

i2s_output_v1_0

clk

data_l[15:0]

data_r[15:0]

data_accepted

i2s_sd

i2s_lrclk

i2s_sclk

i2s_mclk

ja
0

ja
1

ja
2

ja
3

mb_axi_mem_interconnect_0

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

S01_AXI

S02_AXI

S03_AXI

S04_AXI

M02_AXI

M03_AXI

M04_AXI

M05_AXI

M06_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

S01_ACLK

S01_ARESETN

S02_ACLK

S02_ARESETN

S03_ACLK

S03_ARESETN

S04_ACLK

S04_ARESETN

M02_ACLK

M02_ARESETN

M03_ACLK

M03_ARESETN

M04_ACLK

M04_ARESETN

M05_ACLK

M05_ARESETN

M06_ACLK

M06_ARESETN

mb_dma_axi_bram_ctrl_0

AXI BRAM Controller

S_AXI

BRAM_PORTAs_axi_aclk

s_axi_aresetn

proc_sys_reset_0

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

IIC_0

SPI_0

USBIND_0

M_AXI_GP0

S_AXI_GP0

M_AXI_GP0_ACLK

S_AXI_GP0_ACLK

IRQ_F2P[2:0]

FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

S01_AXI

M02_AXI

M03_AXI

M04_AXI

M05_AXI

M06_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

S01_ACLK

S01_ARESETN

M02_ACLK

M02_ARESETN

M03_ACLK

M03_ARESETN

M04_ACLK

M04_ARESETN

M05_ACLK

M05_ARESETN

M06_ACLK

M06_ARESETN

rgb_PWM_0

PWM_v2.0

PWM_AXI

pwm[5:0]pwm_axi_aclk

pwm_axi_aresetn

rg
b

_
le

d
[5

:0
]

rst_ps7_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

share_axi_bram_ctrl_0

AXI BRAM Controller

S_AXI

BRAM_PORTAs_axi_aclk

s_axi_aresetn

share_axi_bram_ctrl_1

AXI BRAM Controller

S_AXI

BRAM_PORTAs_axi_aclk

s_axi_aresetn

share_blk_mem_gen_1

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

rsta_busy

rstb_busy

va
u

x0

va
u

x1

va
u

x5

va
u

x6

va
u

x8

va
u

x9

va
u

x1
2

va
u

x1
3

va
u

x1
5

vp
_

vn

xadc_wiz_0

XADC Wizard

s_axi_lite

Vp_Vn

Vaux0

Vaux1

Vaux5

Vaux6

Vaux8

Vaux9

Vaux12

Vaux13

Vaux15

s_axi_aclk

s_axi_aresetn

ip2intc_irpt

user_temp_alarm_out

vccint_alarm_out

vccaux_alarm_out

vccpint_alarm_out

vccpaux_alarm_out

vccddro_alarm_out

ot_out

channel_out[4:0]

eoc_out

alarm_out

eos_out

busy_out

xlconcat_2

Concat

In0[0:0]

In1[0:0]

In2[0:0]

dout[2:0]

xlconstant_0

Constant

dout[0:0]

xlconstant_1

Constant

dout[0:0]

Enclave_1_peripherals

Enclave_1_local_memory

Enclave_1

(d) Hardware for SSA-3 without a Debugging Module

CTEE1

MicroBlaze

INTERRUPT DLMB

ILMB

M_AXI_DP

M_AXI_IP

DEBUG

Clk

Reset

CTEE1_peripherals

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

S01_AXI

M02_AXI

M03_AXI

S02_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

S01_ACLK

S01_ARESETN

M02_ACLK

M02_ARESETN

M03_ACLK

M03_ARESETN

S02_ACLK

S02_ARESETN

CTEE2

MicroBlaze

INTERRUPT DLMB

ILMB

M_AXI_DP

M_AXI_IP

DEBUG

Clk

Reset

CTEE2_peripherals

AXI Interconnect

S00_AXI

M00_AXI

S01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

S01_ACLK

S01_ARESETN

D
D

R

F
IX

E
D

_
IO

axi_intc_0

AXI Interrupt Controller

s_axi

interrupt
s_axi_aclk

s_axi_aresetn

intr[0:0]

blk_mem_gen_0

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

rsta_busy

rstb_busy

clk_wiz_25M

Clocking Wizard

reset

clk_in1

clk_out1

locked

data_lmb_bram_if_cntlr_1

LMB BRAM Controller

SLMB

BRAM_PORTLMB_Clk

LMB_Rst

data_lmb_v10_1

Local Memory Bus (LMB) 1.0

LMB_Sl_0

LMB_M

LMB_Clk

SYS_Rst

ins_lmb_bram_if_cntlr_0

LMB BRAM Controller

SLMB

BRAM_PORTLMB_Clk

LMB_Rst

ins_lmb_v10_0

Local Memory Bus (LMB) 1.0

LMB_Sl_0

LMB_M

LMB_Clk

SYS_Rst

int_axi_gpio_0

AXI GPIO

S_AXI
GPIO

gpio_io_o[0:0]
s_axi_aclk

s_axi_aresetn

microblaze_1_local_memory

DLMB

ILMB

SYS_Rst

LMB_Clk

proc_sys_reset_0

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

IIC_0

SPI_0

USBIND_0

M_AXI_GP0

S_AXI_GP0

M_AXI_GP0_ACLK

S_AXI_GP0_ACLK

IRQ_F2P[2:0]

FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

S01_AXI

M03_AXI

M04_AXI

M05_AXI

M06_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

S01_ACLK

S01_ARESETN

M03_ACLK

M03_ARESETN

M04_ACLK

M04_ARESETN

M05_ACLK

M05_ARESETN

M06_ACLK

M06_ARESETN

rgb_PWM_0

PWM_v2.0

PWM_AXI

pwm[5:0]pwm_axi_aclk

pwm_axi_aresetn

rg
b

_
le

d
[5

:0
]

rst_ps7_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

share_axi_bram_ctrl_0

AXI BRAM Controller

S_AXI

BRAM_PORTAs_axi_aclk

s_axi_aresetn

share_axi_bram_ctrl_1

AXI BRAM Controller

S_AXI

BRAM_PORTAs_axi_aclk

s_axi_aresetn

share_blk_mem_gen_1

Block Memory Generator

BRAM_PORTA

BRAM_PORTB

rsta_busy

rstb_busy

xlconcat_2

Concat

In0[0:0]

In1[0:0]

In2[0:0]

dout[2:0]

xlconstant_0

Constant

dout[0:0]

xlconstant_1

Constant

dout[0:0]

Enclave_1

Enclave_1_peripherals

Enclave_1_ILMB

Enclave_1_DLMB

Enclave_4

Enclave_4_peripherals

Enclave_4_local_memory

(e) Hardware for SSA-4 without a Debugging Module

Figure 8: Block diagrams of the hardware designs of the four enclaves for the four example SSAs (software-based attestation
pro�le). The ZYNQ processing system (processing_system7_0) represents the hardcore Cortex-A processor. Each of the enclaves
for SSA-1, SSA-2, and SSA-3 has one MicroBlaze softcore CPU, whereas SSA-4 has two enclaves. The MicroBlaze interrupt
interface is connected to an AXI interrupt controller and con�gured with an AXI GPIO. All output GPIO to the softcore is
connected to the hardcore system for triggering interrupts. Two AXI Interconnects, mb_axi_mem_interconnect_0 for Microblaze
and ps7_axi_periph for Cortex-A processor are used to connect external IPs. The ZYNQ, Microblaze, and other IPs get primary
clock input from the clk_in1 port. The reset port is connected to the reset interfaces of the IPs.

