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Abstract—In recent years, we have witnessed unprecedented
growth in using hardware-assisted Trusted Execution Environ-
ments (TEE) or enclaves to protect sensitive code and data on
commodity devices thanks to new hardware security features,
such as Intel SGX and Arm TrustZone. Even though the
proprietary TEEs bring many benefits, they have been criticized
for lack of transparency, vulnerabilities, and various restrictions.
For example, existing TEEs only provide a static and fixed
hardware Trusted Computing Base (TCB), which cannot be
customized for different applications. Existing TEEs time-share
a processor core with the Rich Execution Environment (REE),
making execution less efficient and vulnerable to cache side-
channel attacks. Moreover, TrustZone lacks hardware support
for multiple TEEs, remote attestation, and memory encryption.

In this paper, we present BYOTEE (Build Your Own Trusted
Execution Environments), which is an easy-to-use infrastruc-
ture for building multiple equally secure enclaves by utilizing
commodity Field Programmable Gate Arrays (FPGA) devices.
BYOTEE creates enclaves with customized hardware TCBs,
which include softcore CPUs, block RAMs, and peripheral con-
nections, in FPGA on demand. Additionally, BYOTEE provides
mechanisms to attest the integrity of the customized enclaves’
hardware and software stacks, including bitstream, firmware, and
the Security-Sensitive Applications (SSA) along with their inputs
and outputs to remote verifiers. We implement a BYOTEE system
for the Xilinx System-on-Chip (SoC) FPGA. The evaluations on
the low-end Zynq-7000 system for four SSAs and 12 benchmark
applications demonstrate the usage, security, effectiveness, and
performance of the BYOTEE framework.

I. INTRODUCTION

Existing hardware-assisted Trusted Execution Environments
(TEE) on commodity computing devices make use of hardware
security primitives offered by the CPU, such as Intel SGX [31]
and Arm TrustZone [64], to guarantee code and data loaded
inside to be protected, with respect to confidentiality and
integrity, from the Rich Execution Environment (REE). In
recent years, we have witnessed unprecedented growth in
using SGX and TrustZone in real-world products and academic
projects, which include real-time kernel protections [[19], [36],
securing containers and runtime libraries [18]], [[70], [79],
shielding applications from attacks [22], [55], [[72], etc.

Limitations of Existing TEEs. The hardware and software
of existing TEEs nevertheless have the following issues, mak-
ing them either ineffective, inefficient, or untrustworthy: i)
existing TEE architectures, such as Intel SGX and Arm Trust-
Zone, are proprietary and only work for specific computing
architectures, which users have to trust blindly. It is impossible
for users to verify the correctness of the TEE designs or attest
the hardware states at run-time; ii) they only provide a static

and fixed hardware Trusted Computing Base (TCB), which
cannot be customized for different applications. For TrustZone,
it means the TEE has the highest privilege to control the REE
and communicate with all peripherals. The design violates the
principle of least privilege by including unnecessary periph-
erals and buggy peripheral drivers in the software TCB [27]]
and exposing the TEE to malicious peripheral inputs [38]]. For
SGX, it means applications in enclaves have to go through and
trust the REE OS to communicate with peripherals [71]], bloat-
ing the size of software TCB by including a usually monolithic
REE OS kernel, e.g., 27.8M Source Lines of Code (SLOC)
of the Linux kernel [23]; iii) the TEE shares a processor
core with the REE in a time-sliced fashion, not only costing
many CPU cycles [75], [98] for the expensive context switches
between the TEE and REE but also making it vulnerable to
cache side-channel attacks [25]], [30], [39], [97], [99], which
directly undermine TEE’s security promises; iv) the software
TCBs in TEEs are large, creating big attack surfaces for run-
time attacks that hijack the control or data flow [[17], [101].
For example, Haven [21]] places a whole Windows 8 library
OS inside the enclave. OP-TEE, a Cortex-A secure world OS,
has 277K SLOC [10], and TF-M [54]], a trusted firmware for
Cortex-M TrustZone, also over 117K SLOC. Partly due to
these reasons, in 2022 Intel has removed support for SGX in
some future CPUs [78]]. In addition, TrustZone has many other
limitations: i) TrustZone only provides one isolated execution
environment; ii) TrustZone does not encrypt the contents of
Dynamic RAM (DRAM). Therefore, it is subject to code and
data disclosure from cold-boot attacks [40]; and iii) TrustZone
does not have native hardware supports for remote attestations
of code and data integrity [[16], [61]] due to the lack of platform
registers to accumulate measurements.

While many software-based projects attempted to address
one or more of the aforementioned issues by building software
layers on SGX, TrustZone, or RISC-V, some issues, e.g.,
non-verifiable design, non-customizable hardware TCB, time-
sharing of the processor, vulnerable to cold-boot attacks due to
the slow DRAM decay, etc., are rooted in the design of their re-
spective hardware system, business model and ecosystem, etc.;
therefore they cannot be addressed by software alone (refer to
Table for comparisons). For example, SANCTUARY [24]
uses the memory access controller to provide multi-domain
isolation for sensitive applications on Cortex-A TrustZone,
and CURE [20] enables the exclusive assignment of system
resources, e.g., peripherals, CPU cores, or cache resources, to



Vendor Intel Xilinx
Agilex F Zyng-7000 UltraScale+ EG
SoC FPGA R25A [47] XC7Z007S |11 ZUI19EG [83]
LE/LC 2,692,760 3,600 1,143,000
ALMs/LUT 912,800 14,400 523,000
PLLs 28 2 12
DSP 8,528 66 1,968
BRAM (MB) 259 0.225 80.4
1/0 624 49 347
Hardcore CPU | Cortex-AS3 (Q) Cortex-A9 (S) Cortex-A53 (Q)
DRAM (GB) 16 0.512 8
Price in 2022 ~$10K ~$130 ~$4.3K

TABLE I: Example SoC FPGA products. LE: Logic Elements
(Intel); LC: Logic Cells (Xilinx); ALM: Adaptive Logic Mod-
ules (Intel: Multiple LUTS, registers, adders, and multiplexers
make up an ALM); LUT: Look Up Table (Xilinx); DSP:
Digital Signal Processing blocks; PLLs: Fabric and I/O Phase-
Locked Loops; I/0: Maximum User I/O Pin; S: Single-core;
Q: Quad-core. We use a Zynq-7000 system in our evaluations.

each enclave on RISC-V. Even though they address some of
the aforementioned issues, both solutions still suffer from cold-
boot attacks and a large software TCB. Other hardware-based
solutions, such as HECTOR-V [60]], Graviton [80], etc., do not
address all the issues either, and they cannot be deployed on
commodity devices because hardware changes are required.

Benefits of FPGA. Field-Programmable Gate Array
(FPGA) is designed to be configured by users using a hardware
description language after manufacturing. Besides reconfigura-
bility, it has advantages of high performance, fast development
round, etc. As shown in Table [I, a variety of FPGA products
ranging from embedded systems, i.e., Xilinx Zyng-7000 with
only 3,600 logic elements (=$130), to data center devices, i.e.,
Agilex F R25A with 2.6 millions of logic elements (~$10k),
are available in the market. Various FPGA-based application-
specific accelerators, such as for deep convolutional neural
networks [76], [96]], recurrent neural networks [53f], classic
and post-quantum cryptographic algorithms [28], [33[], Mem-
cached [51]], etc., have been proposed and deployed on such
devices [44]], [65]].

More interestingly, FPGA can also be used to build general-
purpose computing platforms, in which users can design
and implement their own softcore CPUs or customize exist-
ing open-sourced [1[l, [2], [S1-[8[, [13]], [15] or proprietary
ones [49], [56]. The available softcore CPUs range from
the partially configurable (i.e., cache size, pipeline depth,
memory management unit, etc.) and proprietary low-end 32-bit
MicroBlaze [56], to the fully customizable and open-sourced
mid-end 32-bit RISC-V [15], [57] and high-end 64-bit A2I
POWER processor [[1]. While the low-end softcore CPUs
are comparable to micro-controllers, their mid-end and high-
end counterparts have performances comparable to hardcore
micro-processors [41]]. Because it is possible to formally verify
the FPGA implementations of system-on-chip resources [20],
[74], including the softcore CPUs, users do not have to blindly
trust a whole proprietary CPU but just the FPGA configuration
modules and verifiers.

Customizing Enclaves Using FPGA. We present a hard-
ware and software co-design framework to Build Your Own
Trusted Execution Environments (BYOTEE) on commodity
FPGA devices. Using the BYOTEE toolchain, users can
easily build multiple equally secure and customized enclaves
on-demand to execute their Security-Sensitive Applications
(SSA). An enclave can include only the hardware and soft-
ware functionality necessary for the SSA and exclude other
hardware and software components on the system, minimizing
the sizes of hardware and software TCB.

At the hardware layer, BYOTEE utilizes commodity
System-on-Chip (SoC) FPGA devices, which integrate both
hardcore CPU system, e.g., Cortex-A, RISC-V, etc., and
FPGA programmable logic architectures. The nature of FPGA
enables on-demand configurations and reconfigurations of
enclaves’ hardware TCBs, which may include softcore CPUs,
Block RAM based (BRAM; same as Static RAM on known
SoC FPGA devices) main memory, and peripherals. For ex-
ample, an enclave may have a softcore A2l POWER CPU and
a hardware GPU as its dedicated peripheral for acceleration.
Each enclave has its own isolated physical address space,
which maps its own main memory, system configuration
registers, and peripherals. The software on the hardcore CPU
and other enclaves cannot see an enclave’s address space
unless it is explicitly specified in the design. By assigning the
hardware resources to co-resident enclaves, BYOTEE builds a
multiprogramming environment, isolates software faults, and
provides memory protection on FPGAs. Because enclaves do
not time-share any processor with each other and the hardcore
system, the cache side-channel attack vector is removed. Cold-
boot attacks on these enclaves are also difficult due to the
characteristics of BRAM.

FPGA alone, however, does not address all the issues of
existing TEEs, and the SSAs need external libraries to execute
and drivers to control the peripherals. On the software front,
the configurable FIRMWARE component of BYOTEE provides
necessary software libraries, e.g., libc, and a Hardware Ab-
straction Layer (HAL), for a minimum software TCB. Even
though formally verifying the correctness and security of
hardware designs, e.g., softcore CPU, is beyond our scope,
BYOTEE offers mechanisms to bootstrap the trust and attest
the integrity of the hardware implementations. In particular,
to bootstrap trust in enclaves statically and dynamically,
BYOTEE offers example paths building on the secure boot
or a run-time trusted module, respectively. Additionally, the
FIRMWARE offers two attestation mechanisms, namely pre-
execution and post-execution attestations. The former extends
the traditional remote attestation of code and input to include
hardware integrity, whereas the latter extends output data
integrity attestation [|16].

We implement a proof-of-concept BYOTEE infrastructure
and toolchain for the Xilinx SoC FPGA. The toolchain in-
cludes HARDWAREBUILDER, which takes developers’ hard-
ware resource need as input and automatically generates hard-
ware modules and interconnections. HARDWAREBUILDER en-
ables developers to focus on SSA development, increases the



usability of BYOTEE, and decreases the chances of developer-
induced misconfigurations. The system and toolchain also
include FIRMWARE, which provides a run-time environment,
and SSAPACKER, which encrypts and signs an SSA binary.
We demonstrate the usage of BYOTEE with four example
SSAs. We emphasize none of the existing TEE solutions can
meet all the security needs of the SSA-3, which is a secure
music player with digital rights management. We evaluate the
security and performance of BYOTEE with 12 benchmark
applications and the four SSAs. The evaluation results on
the low-end Zyng-7000 system show BYOTEE is effective
in defeating attacks and efficient in executing SSAs. The
contributions of this paper are summarized as follows:

o We present BYOTEE, a framework for building multiple
general-purpose enclaves with configurable hardware and
software TCBs utilizing commodity FPGA devices. The
idea of BYOTEE can be implemented on FPGA systems
from any vendor;

o We present example paths to bootstrap trust in an en-
clave’s hardware and software statically or dynamically.
We design and implement two attestation mechanisms
that capture the identifies of boot loaders, bitstream
(hardware implementation), FIRMWARE, and SSA;

e We implement the BYOTEE system and toolchain for
the Xilinx SoC FPGA, which include the HARDWARE-
BUILDER, FIRMWARE, SSAPACKER, and other helper
tools, e.g., linker scripts, to facilitate developers to design,
develop, and debug their SSAs. We open-source the
BYOTEE system and toolchailﬂ

e We choose the very low-end MicroBlaze softcore CPU
and Zyng-7000 system to demonstrate BYOTEE’s us-
age, security, effectiveness, and performance with the
Embench-IoT benchmark suite and four SSAs.

II. BACKGROUND: SOC FPGA

In this section, we discuss the hardware components of
SoC FPGA, followed by its design, development, and run-time
workflow.

A. Hardware Components

A SoC FPGA comprises: 1) hardcore CPU system, which is
formed around hard processors, such as the Cortex-A proces-
sor, to run the traditional operating systems and applications;
ii) FPGA, which can implement arbitrary systems, including
softcore CPUs, high-speed logic, arithmetic, and data flow
subsystems. In addition to the general fabric, the FPGA has
Block RAMs (BRAM) to store data. Note that BRAM is made
of Static RAM (SRAM) on existing SoC FPGA platforms.
Compared to DRAM whose cells are made of capacitors and
is vulnerable to cold-boot attacks due to the slow decay [40],
SRAM decays faster [66]]. FPGA is configured with a bit-
stream, which is programmed in hardware design description
languages, such as Verilog, VHDL, etc.; iii) other integrated
on-chip memory and high-speed communications interfaces.

Thttps://github.com/CactiLab/BYOTee-Build- Your-Own-TEEs
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Fig. 1: An overview of SoC FPGA hardware

Figure |1| shows the architecture of SoC FPGAs. The main
building blocks of the hardcore CPU system include the
hardcore CPU, its Memory Management Unit (MMU), On-
Chip Memory (OCM), caches, etc. Additionally, the hardcore
system connects external I/O interfaces, such as SPI, 12C,
UART, etc. Bridges and interconnects connect the hardcore
system and FPGA interfaces. The FPGA side is mainly com-
posed of configurable logic blocks, logic cells, Adaptive Logic
Modules (ALMs), Lookup Tables (LUTs), flip-flops, switch
matrix, carry logic, BRAM, and Input/Output Blocks (IOB) for
interfacing. The FPGA also includes modules for Analogue to
Digital Conversion (ADC) and a set of Joint Test Action Group
(JTAG) ports for configuration and debugging. Usually sev-
eral security-relevant modules, including non-volatile Battery-
backed RAM (BBRAM), one-time programmable electronic
fuse (eFUSE), and cryptographic accelerators, are connected
to both the hardcore system and FPGA.

B. Development and Run-time Workflow

A typical design and development flow of general-purpose
computing platforms on SoC FPGA involves: i) the devel-
opment of the hardware system on the FPGA, including
designing the peripheral blocks and creating the connections
between these blocks and the hardcore CPU system. In this
step, a developer can use and customize open-sourced and
proprietary hardware IPs; ii) the development of the software
system on the hardcore and softcore CPUs. To be compatible
with SoCs without FPGAs, when a SoC FPGA device is
powered on, the hardcore system boots first before going on
to configure the FPGA.

To enable secure and trusted boot, unique AES and RSA
keys can be generated off the device and programmed to the
persistent secure storage, e.g., eFUSE array, on the device.
The keys are used to encrypt and sign the bitstream and the
firmware (e.g., in ELF format) that runs on the softcore CPU
in the development stage. The device first starts with the hard-
wired boot ROM, which verifies, decrypts, and loads the First
Stage Boot Loader (FSBL) from supported interfaces, such
as SD card, JTAG, etc. The FSBL, in turn verifies and sets
up the FPGA with bitstream using the device configuration
(DevC) [94] interface and firmware, after which the firmware
on FPGA starts execution. The FSBL also verifies the Second
Stage Boot Loader (SSBL), such as U-Boot, and gives control
of the hardcore system to it. The SSBL verifies and boots
the operating system on hardcore CPU. In addition to boot-



time configuration, some FPGAs can also be programmed at
run-time. For instance, software running on the hardcore of
some Xilinx Zynq devices can use the DevC and Processor
Configuration Access Port (PCAP) interfaces to reconfigure
the whole or part of the FPGA.

III. SYSTEM, THREAT AND DEPLOYMENT MODEL

System Model. We assume the DRAM can be configured
to connect to both of the hardcore system and FPGA, and
peripherals can be connected to the FPGA without routing
through the hardcore system. The former enables the hardcore
system and FPGA modules to communicate efficiently via
shared memory, and the latter makes sure the software on the
hardcore system cannot eavesdrop or tamper the data between
the FPGA and peripherals. We assume the hardcore system
and Direct Memory Access (DMA) masters cannot dump the
content in the FPGA. All of the assumptions are realistic in
that they are the standard configurations on most commercial
systems [[63]]. Even though recent research [34] discovered
dumping content from the FPGA is possible due to some
implementation bugs, it was not intended to be a feature. We
assume secure or trusted boot, which loads the software images
onto the hardcore system and the bitstream and FIRMWARE
onto the FPGA after integrity checks at boot-time. We assume
the cryptographic algorithms are secure.

Threat Model. We assume the adversary can compromise
and take full control of the software system of the hardcore
system at run-time, which means the user developed Untrusted
Applications (UA), the kernel, and even privileged software
in the secure world of a TrustZone-based system can be
malicious. The compromised software on the hardcore system
can send arbitrary data to the FIRMWARE and SSAs via shared
DRAM regions and also to the enclave hardware pins, such as
interrupts. Therefore, the FIRMWARE and SSA in an enclave
can be compromised at run-time. Attackers can also perform
cold-boot attacks to dump the content in DRAM.

Deployment and Key Management Models. BYOTEE
does not aim to address any specific deployment and key
management model, as it is related to the user and appli-
cation’s policies and needs. Instead, BYOTEE provides the
mechanisms required to build a secure system.

We nevertheless discuss two examples for local and cloud
deployment and key management. At the cryptographic layer,
we assume each device has a device key, e.g., AES (k;), RSA
(skq, pkq), which are used to encrypt/decrypt and sign/verify
software images, bitstream, and the FIRMWARE. The device
keys are unique to each device and are programmed in the
eFUSE or BBRAM using hardware interfaces with physical
access. We assume a developer can be identified by a developer
key, e.g., RSA (sk,, pk,), which the developer uses to encrypt
and sign the SSAs, and the FIRMWARE uses it to decrypt and
verify the SSAs. Developer public keys are either embedded
into the FIRMWARE at the development stage or loaded into
the FIRMWARE at run-time.

An example solution for local deployment is that the
device owner programs the device keys into the one-time

programmable eFUSE, e.g., through the JTAG interface on
a development board [93]]. The FIRMWARE developer embeds
the allowed the developers’ public keys inside the FIRMWARE
at the development stage. If SSA developers need to register
or update a key, they will send the key public keys to the
FIRMWARE developers.

An example solution for cloud deployment is that the
manufacturer programs the device keys into the one-time
programmable eFUSE same as Intel creates root keys for
any SGX-enabled CPUs. The FIRMWARE developers generate
FIRMWARE and bitstream, and they also encrypt them using
the public part of the device key and embed developers’
public keys in the FIRMWARE. The protected FIRMWARE and
bitstream along with the UA are sent to the untrusted cloud
provider. The developers’ keys update process is similar to the
process for local deployment.

IV. BYOTEE ARCHITECTURE

In this section, we first present the security and functional
design goals of BYOTEE followed by an overview of the BY-
OTEE architecture and workflow. We then illustrate hardware
TCB customization, bootstrapping trust in enclaves, secure
execution of SSA, and remote attestation mechanisms.

A. Design Goals

BYOTEE provides physically isolated execution environ-
ments on-demand, which even hardware debuggers and DMA-
enabled devices cannot access. With the help of BYOTEE,
users can use the exact and even formally verified hardware
and software needed for their applications. BYOTEE has the
following security and functional design goals:

Gl1. General-purpose execution environments. BYOTEE
should provide general-purpose execution environments sim-
ilar to SGX and TrustZone, not application-specific acceler-
ators. SSAs can be implemented in any language as long as
they can be linked against the FIRMWARE.

G2. Multiple isolated execution environments. BYQOTEE
should provide multiple execution environments at the same
time and guarantee the secrecy and integrity of the SSA
running inside each.

G3. Physical execution isolation. BYOTEE should provide
dedicated CPUs for execution environments, and all hardware
resources for enclaves are physically isolated from the REE
and each other. With physical isolation, BYOTEE mitigates the
side-channel attacks that are prevalent in CPU-sharing TEEs,
such as SGX and TrustZone.

G4. Customizable hardware TCB. The hardware TCB of
each enclave should be customizable, allowing for a minimal
TCB that only includes the hardware, e.g., peripherals, neces-
sary for the SSA running inside and excludes other hardware
on the system. Note that formally verifying the customized
hardware [26], [[74] is beyond the scope of BYOTEE.

G5. Isolated path between SSA and peripherals. An enclave
should isolate the communication path between the SSA inside
and peripherals from the hardcore system and other enclaves,
preventing software-based eavesdropping and tampering.



A}
| JSON J HBUILDER |{ = BYOTeetools [T Binary | ” - FPGA Hardcore System
y > | [ BYOTwecodebase ==>Load 1 |s|." Epclave-1 * - Enclave-2 *- Enclave-3
Hardware Synthesizer D Developer input ' o/ . . .
1
|

Description Hardware Development

C/CPP
;

FIRMWARE |
Source Code

Linker

Script
Memory N
Configuration |

C/CPP

SSA Source
Code

c/cpp | Compiler >L ELF

Vv -
UA Source Code UA Binary

| =) Vendor-provided tools

M I’mtcctcd
erger FPGA [nw,u

Compiler

I IRMWARE
Binary

SSA Binary

Software Development

N (2]
Compiler > L ELF ] | SSAPACKER > Proected |._
v v

. . Ry
SSA-1 ] [ SSA-2 J[ SSA-3
RE 1 E FIRMWARE ]I FIRMWARE ]

I FIRBIVVA
l -
£ ]E RISC-V }{ A21
(N - J
- Block RAM

UA-2

ulo

NWVIa

7,
MicroBlaze Hardcore CPU

Boot- & Run-time

Development-time

Fig. 2: The architecture and workflow of the BYOTEE framework at development-, boot- and run-time. During development,
BYOTEE and vendor-provided tools are used to generate the protected FPGA image and protected SSAs, which are loaded
onto the FPGA (@) and enclaves (@), respectively. In this run-time architecture example, three enclaves with different hardware
configurations, including softcore CPUs and peripherals, are presented. Untrusted Applications (UA) access the shared DRAM

region through a userspace I/O interface (UIO).

G6. Enclave-to-Hardcore System and Inter-enclave commu-
nication. The SSA in an enclave should be able to communi-
cate with software modules on the hardcore system and other
enclaves. The inter-enclave communication should be isolated
from the hardcore system and other non-participating enclaves.

G7. Minimal software TCB. The firmware serving an SSA
should only include the housekeeping libraries and drivers
that are necessary for the SSA execution and exclude other
software.

G8. Remote attestation mechanisms. BYOTEE should pro-
vide mechanisms to support sophisticated protocols to attest
the integrity of an enclave’s hardware and software stacks,
including boot loaders, bitstream, FIRMWARE, SSAs and their
inputs and outputs to remote verifiers.

G9. Easy to use. BYOTEE should be easy to use, espe-
cially for the software developers who do not have hardware
programming experience. As a rule of thumb, developing a
BYOTEE SSA should not take significantly more time and
effort than developing a Linux application with the same
functionality.

B. BYOTEE Overview

Figure [2] presents an overview of the architecture and
workflow of the BYOTEE framework. The BYOTEE tools
and codebase mainly include the HARDWAREBUILDER,
FIRMWARE, and SSAPACKER. During the development stage,
the HARDWAREBUILDER generates synthesizer commands,
e.g., Tcl, based on the SSA’s needs specified in the de-
veloper’s hardware description JSON input. Then, the SoC
FPGA vendor-provided synthesizer, e.g., Xilinx Vivado [84],
Intel Quartus Prime [48], generates the bitstream file using
the synthesizer commands. The developer can customize the
FIRMWARE by only including the needed source code and
writing the SSA source codes, which are compiled with the
corresponding compiler for the softcore CPU, e.g., mb—gcc

for MicroBlaze. The bitstream and FIRMWARE binary are
encrypted, signed, and packed by the vendor-provided merger,
e.g., UpdateMEM from Xilinx, into a protected FPGA image.
The SSA binary is encrypted, signed, and packed by the
SS APACKER into a protected SSA. At boot-time, the bitstream
is loaded onto the FPGA. As a result, multiple enclaves are
created, and the corresponding FIRMWARE starts running.
Then, an untrusted application can trigger the loading of a
protected SSA into an enclave.

BYOTEE meets GI, G2, G3, G4, and G5 by configuring
the FPGA to build enclaves. BYOTEE constructs enclaves
with softcore CPUs, which provide general-purpose computing
environments (G/). The FIRMWARE includes the standard C
libraries and connected peripheral HAL libraries for SSAs to
invoke at run-time. Each enclave has its own set of hardware
(G2), including softcore CPU, e.g., MicroBlaze, UltraSPARC,
etc., Block RAM, and peripherals. With FPGA routing, these
hardware resources within an enclave are connected together
but isolated from the hardcore system and other enclaves (G3).
The softcore CPU in an enclave is not time-shared with the
hardcore system and other enclaves, mitigating the cache side-
channel attacks (G3). No additional hardware modules, such
as debuggers, can be connected to an enclave unless it is
explicitly specified by the developer (G4). The connections
among these resources are also physically isolated from the
hardcore system and other enclaves, preventing eavesdropping
and tampering (G5).

Enclaves use interrupts on softcore CPUs and shared phys-
ical memory regions on the DRAM to communicate with
the hardcore system, whereas enclaves use interrupts and
shared regions on the BRAM to communicate with each other.
Since a shared BRAM region is only mapped in the address
spaces of the participating enclaves, it is isolated from the
hardcore system and other enclaves (G6). BYOTEE includes
FIRMWARE, which can be customized and only consists of
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libraries, a HAL for the needed peripherals, and a loader for
the SSA (G7). The FIRMWARE also provides softcore CPU
interrupt-based remote attestation mechanisms for proving the
integrity of enclaves (G8). BYOTEE provides an easy-to-use
toolchain for developers to focus on SSA development, in-
creasing the usability of BYOTEE and decreasing the chances
of developer-induced misconfigurations (G9).

C. Customizing Hardware TCB for Enclaves

To customize the hardware TCB, the developer designs one
or more enclaves using a hardware description language, e.g.,
Verilog or VHDL. The output is a bitstream file that configures
the FPGA. To facilitate this step, BYOTEE has a component,
named HARDWAREBUILDER, which takes developer-specified
hardware description in JSON format as input (See an example
in §V-B)), allocates hardware resources, and outputs a script,
e.g., in Tcl format, that can be processed by a synthesis tool
to generate the bitstream. Each enclave’s hardware description
includes but is not limited to: i) a softcore CPU and its
configurations, e.g., clock frequency, cache size, etc; ii) a
corresponding debug IP to enable software debugging on
the softcore CPU; iii) its main BRAM memory address and
size; iv) the address and size of the shared DRAM with
the hardcore system; v) the address and size of the shared
BRAM with other enclaves; and vi) connected peripherals.
The HARDWAREBUILDER assigns a contiguous address space
of the BRAM to each enclave and connects the hardware
components automatically.

D. Bootstrapping Trust in Enclaves

Because the details of trust bootstrap are related to the spe-
cific deployment model and policies, BYOTEE provides the
mechanisms to build trust bootstrap paths. BYOTEE supports
FPGAs that can be configured at boot time and/or reconfigured
at run-time by providing trust bootstrap in enclaves both
statically and dynamically. The static trust bootstrap builds
on secure or trusted boot, whereas the dynamic trust bootstrap
relies on some dynamic root-of-trust modules at run-time.

Without loss of generality, Figure [3] shows three example
paths for static and dynamic trust bootstrap on the Xilinx Zynq
SoC with Arm hardcore CPUs. In the static bootstrap case @,
BYOTEE relies on secure or trusted boot to launch enclaves.
BootROM, which is the root of trust for measurement, first

decrypts, measures, i.e., m; = H(FSBL), and executes the
FSBL using the device keys. The FSBL initializes the hardcore
system by decrypting, measuring, and executing the SSBL
using the device keys. A measurement mg = H(mq||SSBL)
is generated in this step. The FSBL also initializes the FPGA
by decrypting, measuring, and configuring the FPGA using
the device keys, after which bitstream is programmed on the
FPGA, and the FIRMWARE starts execution. A measurement
ms = H(mg||BS||FW) is generated by the FSBL and placed
on the shared DRAM region with the enclave for the future
use of attestation report generation, which we discuss in
The FIRMWARE uses the developer keys, e.g., k, and/or
pky, to decrypt and measure the SSA. Allowed developer
keys are embedded in the FIRMWARE at the development
stage. Because the FIRMWARE is encrypted at rest and only
decrypted on the BRAM, the developer keys are secure.

In the dynamic case, software running on the hardcore
system of a Xilinx Zynq device can use the device configura-
tion (DevC) or Processor Configuration Access Port (PCAP)
interfaces to reconfigure the FPGA. Therefore, the software
module that reconfigures the FPGA needs to access the device
key and must be trusted. In the case that TrustZone is not
available or used @, the trusted software module can be part
of the REE kernel, which uses the device keys to decrypt
and measure the bitstream and FIRMWARE. If TrustZone is
available €), the trust software module can be a kernel module
inside the TrustZone secure world operating system.

E. Executing SSAs in Enclaves

To create an SSA, the developer links the source code
against the FIRMWARE. After the launching of an enclave, the
FIRMWARE initializes the softcore CPU and other components,
then it waits for requests from the hardcore system. Both
the FIRMWARE and SSA use a shared DRAM region in the
SSA Execution Block (SEB) format as shown in Figure [4]
to have two-way data transmissions with UA on the hardcore
system. To initiate the transmission from the hardcore system
to an enclave, UA on the hardcore system raises interrupts
on the enclave’s softcore CPU, which are handled by the
FIRMWARE. BYOTEE defines three service primitives through
the LdExec™ interrupts: i) load and execute an SSA (LdExec);
ii) load and execute an SSA with pre-execution attestation
(LdExecPreAtt); iii) load and execute an SSA with post-
execution attestation (LdExecPostAtt). The softcore CPU in-
terrupts can be implemented as GPIO interrupts in the enclave
and memory-mapped to a DRAM address for the UA to access.
In this subsection, we focus on LdExec, and the other two
primitives are discussed in

To execute an SSA on an enclave, the untrusted appli-
cation first fills data into the SEB and raises a LdExec*
interrupt. As shown in Figure ] a SEB has regions for
the encrypted and signed SSA (SSA*), input data for the
SSA, output data from the SSA, a challenge Chal from
a remote verifier, a pre-execution (PreEzecAtt), a post-
execution attestation measurement (PostExecAtt) and other
data. When the FIRMWARE receives a LdExec* interrupt, it
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Fig. 4: SSA Execution Block (SEB) layout, simplified enclave
address space layout, and steps in executing an SSA.

copies SSA* and optionally C'hal and input data in the SEB
from DRAM to its own BRAM @. The FIRMWARE can also
disable LdExec™ interrupts after the data is copied. Note that
it is critical for the FIRMWARE to perform measurement on
the BRAM since the DRAM can be changed asynchronously
by the hardcore system. The FIRMWARE then decrypts and
verifies the encrypted SSA* using the corresponding devel-
oper’s keys @. Upon the successful verification of the SSA’s
integrity, the FIRMWARE loads sections of the decrypted SSA
to the right locations and gives the control to the SSA @.
If there is an output, the SSA writes it in the output region
on the BRAM, and yields the control of the softcore CPU
back to the FIRMWARE. The FIRMWARE copies the output
from the BRAM to the DRAM @. Finally, the FIRMWARE
cleans up all the input, output, and SSA-related regions on the
BRAM and awaits new requests from the hardcore system @.
While SSAs can execute concurrently on their own enclaves
respectively, the FIRMWARE also supports executing multiple
SSAs sequentially or the same SSA multiple times on the same
enclave without reconfiguring the FPGA but just re-initializing
the enclave, e.g., flush the cache, clean up the BRAM @, etc.

FE. Pre-execution and Post-execution Attestation Mechanisms

BYOTEE provides two attestation mechanisms, namely
pre-execution and post-execution attestations, as shown in
Figure 4] The former extends the traditional remote attestation
of code and input integrity with bitstream, whereas the latter
extends the output data integrity attestation [16]. Note that
BYOTEE only provides the mechanism for attestation, which
can support sophisticated attestation protocols. With the help
of trust bootstrapping discussed in the measurement
mechanism not only captures the identity of the loaded SSA
but also the bitstream, FIRMWARE and programs, e.g., FSBL
and SSBL, before it.

In pre-execution attestation, a verifier sends a crypto-
graphic nonce as Chal, which is copied to the BRAM by
the FIRMWARE @. After loading the SSA sections to the
right addresses, the FIRMWARE computes a measurement

PreFEzecAtt on the vector table, FIRMWARE code and data,
ms, Chal, input data and SSA sections @), and copies the
measurement to the DRAM. Depending on scenarios and
attestation protocol details, the FIRMWARE can use a device
key, developer key, or other shared keys to compute the mea-
surement. In post-execution attestation, the C'hal from Vrf is
also copied to the BRAM by the FIRMWARE ). After the SSA
finishes execution @), the FIRMWARE computes a measurement
PostExecAtt on the vector table, FIRMWARE code and read-
only data, mg, C'hal, input data, output data generated by the
SSA, SSA’s read-only sections and PreFExecAtt, and copies
the measurement to the DRAM @©.

G. Multiple Inputs to SSA

In the case that the UA on the hardcore system needs to
continuously send input data to the SSA, e.g., not all input
data is available at the beginning, the size of input in SEB is
not big enough, etc., the UA writes the newly available input
data in the input region inside the SEB, and it can use two
mechanisms to notify the FIRMWARE and SSA that new data
is available. The first mechanism works for softcore CPUs that
support priority interrupts. On such systems, BYOTEE defines
a NewData interrupt, which UA can raise. The NewData
interrupt has a low priority so that it cannot interrupt the
execution of the SSA. Only after the SSA finishes execution
and yields the control back to the FIRMWARE, the FIRMWARE
can copy and measure the input data from the DRAM to the
BRAM, and gives the control to the SSA again. On softcore
CPUs without priority interrupts, the FIRMWARE uses global
variables to indicate whether new data is available in the input
region to synchronize with the SSAs on the enclaves.

H. Optional Multiple Protected SSA Sessions

As an option, an enclave can also interleave the execution of
multiple eligible SSAs with proper hardware re-initialization,
e.g., flush cache, reset all memory, etc. To this end, BYOTEE
defines two interrupt-based service primitives: i) suspend and
export the SSA state (SUSEXp); ii) restore and execute a saved
and encrypted SSA state (ReExec). When a SusExp interrupt
is raised, the FIRMWARE copies the SSA context, e.g., general
and system registers, onto the BRAM. Then, the FIRMWARE
uses the developer key to encrypt and sign the saved SSA
context and all of the SSA’s writable memory regions, e.g.,
stack, .data, .bss, etc. The encrypted blob is placed in the
SEB output region for the UA to retrieve, after which the
FIRMWARE cleans up BRAM and awaits new requests. When
a ReExec interrupt is raised, the FIRMWARE retrieves an
encrypted blob from the SEB input region. Upon a successful
signature verification, the FIRMWARE loads the decrypted
memory contents to the right locations, restores the registers,
and resumes the SSA execution.

V. BYOTEE APPLICATIONS AND DEVELOPER’S
PERSPECTIVE

In this section, we first use multiple SSA examples to
demonstrate how BYOTEE can secure real-world applications



in several classes. Then, we discuss how developers can easily
develop and deploy enclave hardware, SSAs, and UAs using
the BYOTEE toolchain.

A. BYOTEE Applications

Computational Applications. Computational applications
take input from the hardcore system or other enclaves, perform
the intended computational operations, and send the outputs
back. They represent computational tasks, such as encryption,
decryption, machine learning-based classification, etc., that do
not need peripherals. BYOTEE protects such applications from
code and data disclosure, memory corruption, and cache side-
channel attacks from the hardcore system and other enclaves
at run-time. We implement an AES accelerator SSA (SSA-1)
as an example for computational applications. To use SSA-1,
a UA places the plaintext or ciphertext in the SEB and notifies
the SSA. When the encryption or decryption is finished, SSA-
1 places the outputs on the SEB.

Peripheral Interacting Applications. Peripheral interact-
ing applications use some peripherals, but they do not com-
municate with other SSAs or the hardcore system. An ex-
ample usage is cyber-physical applications that read from
sensors, make local decisions, and control an actuator. Besides
the attacks BYOTEE protects the computational applications
from, BYOTEE also protects the paths between the SSA and
peripherals from attacks for these applications. We develop an
LED toggler SSA (SSA-2) that uses a button and an LED.
When the button is pressed, SSA-2 toggles the color of the
LED. Both the button and LED are connected to the enclave
of SSA-2 only and cannot be accessed by the hardcore system
or other enclaves.

Peripheral and Hardcore System Interacting Applica-
tions. Peripheral and hardcore system interacting applications
do not only control some peripherals but also continuously
interacts with a UA. For demonstration, we develop a music
player system with digital rights management that guarantees
the confidentiality, integrity, and authenticity of songs for
artists and recording studios. This means i) songs cannot be
digitally disclosed, ii) songs cannot be modified, and iii) only
songs that were protected can be played.

To this end, the music player system has three components:
i) a trusted song protector (in Python with 160 SLOC), which
is an offline component to encrypt and sign a song file (WAV
format); ii) a UA (in C with 695 SLOC) running on the
hardcore system, which provides a user interface to play,
pause, resume, and stop a protected song. The UA awaits for
the user’s commands, reads protected songs from storage, e.g.,
SD card, and sends them to the song playing SSA. Because
the protected song file is big (e.g., an original 77 seconds,
48KHz, and a single channel WAV file is around 33MB. The
protected song file is several hundred bytes bigger.), the UA
needs to continuously read the protected song file data from the
storage and send it to the SSA; iii) a song playing SSA (SSA-
3) that authenticates, decrypts, and plays a song by sending the
plaintext data of it to a hardware audio module. The hardware

audio module is only connected to the enclave running SSA-3,
so the hardcore system and other enclaves cannot access it.

We emphasize that any software solution that solely trusts
SGX or TrustZone cannot meet the security requirements of
this music player system because: i) there is no isolated or
trusted I/O path between an SGX enclave and the hardware
audio module; hence a malicious REE OS can breach the
confidentiality, integrity, and authenticity of a song. Some
solutions, such as SGXIO [81]], attempt to address this issue
but they need to add additional hardware, e.g., the hypervisor,
into the TCB; ii) a TrustZone application must decrypt the
song in DRAM before sending it to play; hence, vulnerable
to cold-boot attacks.

Distributed Applications. A distributed application con-
sists of multiple inter-communicating SSAs running on differ-
ent enclaves at the same time. The SSAs communicate through
a shared BRAM region. BYOTEE not only protects each of
the SSAs but also their communications from the hardcore
system and other enclaves. For demonstration, we develop an
application that processes data in sequence with two SSAs.
SSA-1 first receives data from a UA, decrypts the data, outputs
to the shared BRAM instead of DRAM, and the second SSA
(SSA-4) takes the output of SSA-1 and performs a SHA512-
HMAC signature verification.

B. Developer’s Perspective

Creating Enclave Hardware. A developer can use the
HARDWAREBUILDER to design and create the hardware com-
prising of one or multiple enclaves. Listing shows an
example hardware description in JSON format of three en-
claves. Enclave-1 has a 32-bit MicroBlaze softcore CPU [&89].
Enclave-2 has a 32-bit VexRisc softcore CPU [15]], Enclave-
3 uses a 64-bit A2l softcore CPU [1]. The softcore CPUs
of Enclave-2 and Enclave-3 have FPUs, instruction, and data
caches. A2l softcore of Enclave-3 has MMU enabled with a
page size of 4KB. Debugging is enabled on the softcore CPU
of Enclave-1 only, for which HARDWAREBUILDER inserts
a debugging module to help the developer debug and trace
the SSA on this enclave. A DRAM region is reserved for
the SEB of each enclave, respectively. A UART peripheral
is only connected to the Enclave-1 and cannot be accessed
by the hardcore system or the other enclave. Additionally, a
GPIO peripheral is connected to both the hardcore system and
Enclave-2 but cannot be accessed by Enclave-1 or Enclave-
3. Each enclave shares a DRAM region with the hardcore
system for 2-way enclave-to-hardcore System communication.
Enclave-1 and Enclave-3 can also use the shared BRAM
region to communicate.

The developer uses HARDWAREBUILDER to generate hard-
ware configurations, which outputs the Tcl scripts containing
the synthesizer commands. The —d parameter specifies the
JSON configuration file, and —o defines the output Tcl path:

hardwareBuilder.py —-d <CONFIG_JSON> -o <TCL>

Then, the developer invokes the synthesizer tool with the
Tcl script as input. The —n parameter specifies the name of
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{"Enclaves": [

{"Name": "Enclave-1",
"Processor": {"Type": "MicroBlaze 32bit",
"Debugging": "Enabled"},

"Memory Size": "512KB",
"Shared DRAM SEB": {

"Base": "0x20000000", "Size": "7MB"}},
{"Name": "Enclave-2",
"Processor": {"Type": "VexRisc 32-bit",
"Data Cache": "16KB",
"Instruction Cache": "16KB", "FPU": "F32",
"Debugging": "Disabled"},
"Memory Size": "32MB",
"Shared DRAM SEB": {
"Base": "0x20000800", "Size": "178MB"}},
{"Name": "Enclave-3",
"Processor": {"Type": "A2I 64bit",
"Data Cache": "64KB",
"Instruction Cache": "G64KB",
"MMU": "Enabled", "MMU Page Size": "4KB",
"FPU": "AXU", "Debugging": "Disabled"},
"Memory Size": "64MB",
"Shared DRAM SEB": {
"Base": "0x20020800", "Size": "256MB"}}],
"Peripherals": [
{"Type": "AXI Gpio",
"Board Interface": "Btns 2bits",
"Access": ["Hardcore system", "Enclave—Z"]},
{"Type": "Uart Lite 8bit",
"Baud Rate": "115200",
"Access": ["Enclave-1"]},
{"Type": "Dual Port BRAM Generator",
"Base Address": "0x1F0000"™, "Size": "2MB",
"Access": ["Enclave-1", "Enclave-3"]}]}

Listing 1: An example hardware description defining three
enclaves in JSON format. Each enclave has its own customized
softcore CPU (processor model, cache, FPU, etc.), peripheral
connections, memory, etc.

the hardware project, and the bf parameter specifies the mode
of operation, which includes generating bitstream, combining
bitstream with FIRMWARE, etc. The final output of the HARD-
WAREBUILDER is a bitstream file specified by —o:

—-d <TCL> -n <PROJ_NAME> -bf <
-0 <FPGA_IMAGE>

createFPGAImage
BUILD_FLAG>

Creating Boot Images. After the HARDWAREBUILDER,
the developer uses the boot loader creation tool with the
developer-defined boot image format, e.g., .bif, and the
protected FPGA image to create a deployable binary file.

createBootImage <SYSTEM_BIF> <FPGA_IMAGE> -o <
BYOTee_BIN>

Creating SSAs and UAs. BYOTEE FIRMWARE
is primarily developed in C, but software modules
developed in any language that can be linked against

the FIRMWARE can be included in an SSA. The
SSAs, which have their own main functions with
a declaration of int main () __attribute

((section (".text.ssa_entry"))), are developed
as separate applications from the FIRMWARE. In our
prototype implementation, SSAs are statically linked against
the FIRMWARE with the linker script BYOTEE provides,

which reserves physical memory regions for the SSAs’ code
and data sections.

Not all libc functions are available for the SSAs to use.
For example, printf may is not available since stdout
is not defined in the FIRMWARE for a specific FPGA sys-
tem. To move data among DRAM, BRAM, and peripheral
memories, system-specific underlying mechanisms will be
used. The FIRMWARE provides a HAL with interfaces like
BYOT_MemCpy to replace the libc memcpy. The UAs execute
as unprivileged applications on the operating system, e.g.,
Petalinux for Xilinx devices, of the hardcore system. The UAs
use a UIO interface to communicate with the FIRMWARE and
SSA running on the FPGA.

The developer uses the SSAPACKER to generate protected
SSA binaries:

SSAPACKER —-d <SSA_BIN> -o <PROTECTED_SSA>

BYOTEE also includes a tool to put the boot loader, Petal.-
inux image, UA, protected FPGA image, and protected SSA
binaries on the SD card for the deployment and debugging on
Xilinx SoC FPGA systems:

deploySoC <SD_DEVICE> <BYOTee_BIN> <FPGA_IMAGE> <
PROTECTED_SSA> <UA> <IMAGE.ub>

VI. SECURITY ANALYSIS AND LIMITATIONS

In this section, we conduct an informal security analysis of
BYOTEE, in which we discuss the attacks BYOTEE can and
cannot defend from.

A. Malicious and Compromised Hardcore System Software

Read and Write to Enclaves. The hardcore system soft-
ware, including the operating system and UA, is not a part of
the TCB in BYOTEE. Even if the hardcore system software
is compromised at run-time, the attacker cannot access the
data on/from enclave hardware resources, including BRAM
and peripherals, because they are in the isolated address
space of the target enclave. The attacker cannot breach the
confidentiality of SSA code and data as well, because they are
encrypted at build time. The enclave-hardcore system 2-way
communication is based on interrupts and the shared DRAM.
Malicious hardcore system software can raise the interrupt
to the enclave to carry out a DoS attack. Utilizing priority
interrupts in sophisticated softcore processors, BYOTEE can
prevent these attacks from the hardcore system side.

Reconfiguring FPGA. The secure or trusted boot, i.e., static
root of trust, process of BYOTEE ensures the secure loading
of the bitstream to configure the FPGA at boot time. An alter-
native dynamic root of trust approach ensures a compromised
hardcore system software cannot load an attacker-controlled
bitstream to reconfigure the FPGA if the hardware supports
run-time reconfiguration.

B. Compromised FIRMWARE and SSAs

If the software layer of an enclave, i.e., FIRMWARE and
SSA, is compromised at run-time by untrusted input sent by
the hardcore system software, it can disclose information in



the compromised enclave address space, including data on the
BRAM and data from the connected peripherals. But it cannot
read data from the BRAM or peripherals of other enclaves,
since they are in different address spaces and cannot be seen
by the compromised software. Therefore, the attack is confined
within the compromised enclave.

C. Hardware IPs and Malicious Peripherals

Malicious hardware IPs cannot be loaded since a bitstream
is signed by a trusted developer and verified before loading.
Even if peripherals are malicious and send out rogue DMA
requests to access sensitive memory regions, they are confined
in the enclave they are assigned to. Therefore, a malicious
peripheral can only cause limited damages.

D. Cold-boot Attack

Cold-boot attacks rely on the observation that the contents in
memory are not immediately erased after power is lost. While
cold-boot attacks on DRAM even at room temperature are
proven very effective [40]], attacks on SRAM without external
power sources are less feasible [[66]]. Most data BYOTEE
stores on the DRAM is either encrypted or does not need
to be protected. For instance, even if the SEB is located
on the DRAM and subject to cold-boot attacks, the SSA*,
which includes developer keys, is encrypted. Obviously, Chal,
PreExecAtt, PostExecAtt do not need to be protected. It is,
however, possible to dump the input and output fields of
the SEB using cold-boot attacks on DRAM. Other sensitive
data, such as developer keys, plaintext SSA, program states,
are placed on an enclave’s BRAM. Cold-boot attacks on
BRAM are difficult because: i) the BRAM cells are hardware
initialized during FPGA configuration in many SoC FPGA
systems [90]; ii) even without initialization, the contents in
BRAM decays faster [60]; iii) BRAM is embedded on-chip
and cannot be physically taken out, so attackers have to bypass
software protections to dump its content.

E. Side-channel Attacks

Cache side-channel. Because the CPU is time-shared
between the REE and TEE in SGX and TrustZone, cache
side-channel attacks are effective [25[, [30], [97], [99]. In
BYOTEE, the REE on the hardcore system side and enclaves
do not time-share any CPU resources; hence, there is no cache
side-channel between the REE and TEEs.

Power side-channel. In FPGA-based remote power side-
channel attacks, the attacker builds an on-chip ring oscillators-
based power monitor to conduct power analysis attacks on
other modules on the same FPGA or a CPU on the same
SoC [[100]. BYOTEE cannot directly mitigate these attacks
but can them by only loading authenticated and trusted enclave
bitstreams that do not have a power monitor.

Other side-channels. When multiple enclaves reside on
the same SoC FPGA, they share FPGA hardware resources.
Therefore, it is possible to conduct other sharing-based side-
channel attacks, such as FPGA long wire-based attacks [37]],
[67]. Similar to power side-channel attacks, BYOTEE cannot
prevent these attacks directly.

VII. IMPLEMENTATION AND EVALUATION

In this section, we present an implementation of the BY-
OTEE framework for the Xilinx SoC FPGA and evaluate it on
a low-end Digilent Cora Z7-07S development board (=$130)
with a Zyng-7000 FPGA.

A. Experiment Environment

The Cora Z7-07S board has a single-core 667MHz Arm
Cortex-A9 processor with 512MB DDR3 memory, 32KB L1
cache, 512KB L2 cache and a Xilinx Zyng-7000 FPGA. As
shown in Table [} the Zyng-7000 FPGA has 3,600 logic cells,
14,400 LUTs, 6,000 LUTRAM, 28,800 flip-flops, a 225KB
BRAM, 66 Digital Signal Processing (DSP) slices, and 100
IOBs. The development board also has an SPI header, two
push-buttons, two RGB LEDs, a microSD card slot, two Pmod
connectors, etc. We connect a Pmod 1252 stereo audio input
and output device [[12] to the board for SSA-3 evaluation.
Figure [/| (in Appendix) shows the top and bottom view of
the board with the connected audio device. We create two
partitions, namely boot and root, on an SD card and use
the Xilinx bootgen tool to generate device boot images [95]].
Bootgen stitches a stock FSBL for the hardcore system and
the protected FPGA image together to create a binary boot file.
The boot file, U-Boot as the SSBL for the hardcore system,
and a PetaLinux image for the hardcore system are stored in
the boot partition, whereas the protected SSAs, UAs, and
other application files are stored in the root partition.

B. BYOTEE Implementation

We implemented the BYOTEE infrastructure and toolchain,
which includle HARDWAREBUILDER, SSAPACKER, and
FIRMWARE, for the Xilinx SoC FPGA. The HARDWARE-
BUILDER was developed in Python (2.5K SLOC). The SS-
APACKER include Python (63 SLOC) and C code (420
SLOC). The FIRMWARE was developed in C and has an SSA
loader and cleaner (1.1K SLOC), an attestation module (333
SLOC), an interrupt initialization and handling module (101
SLOC), and a linker script (212 lines). The FIRMWARE is
linked against the vendor-provided HAL (7.9K SLOC) and
libraries, e.g., libc (1.2MB), etc. The FIRMWARE, especially
the HAL, can be customized to reflect an SSA’s needs.
Our implementation of the SSA loader uses AES-256 for
SSA encryption and SHAS512-HMAC to protect the integrity
and authenticity of SSAs. We use the BLAKE2 [9] hash
algorithm to implement the pre-execution- and post-execution-
attestations of SSA applications in the attestation module. On
the hardcore system side, a userspace I/O interface is used
for the UAs to access the shared DRAM regions between the
hardcore system and FPGA.

C. Enclaves for the Example SSAs

We specified the hardware description for each example
SSA in §V-Aland used the HARDWAREBUILDER and synthe-
sizer to generate its enclave bitstream, e.g., Enclave-1 for SSA-
1. All the enclaves are configured with a 32-bit Microblaze
CPU (version 10.0, 100MHz, no instruction/data cache, no



(b) Enclave-1 wo/ debugger  (c) Enclave-2 wo/ debugger

(a) Enclave-1 w/ debugger (d) Enclave-3 wo/ debugger

(e) Enclave-1 and Enclave-4
wo/ debugger

Fig. 5: Resource footprints of the enclaves with MicroBlaze softcore CPUs for the example SSAs on the Cora Z7-07S. The
yellow and red portions represent the MicroBlaze softcore CPU cells. The purple portion represents the cells of BRAMs. The
pink rectangle represents the I/O ports. In (d), the rectangle on top of the I/O ports represents an analog to digital conversion

module. The blue portions represent all other IPs, such as different peripherals, debugging modules, interconnects.

TABLE II: Hardware TCB size and resource utilization of enclaves for the example SSAs on Cora Z7-07S

Enclave-1 Enclave-2 Enclave-3 Enclave-4
Resource w/ debugger w/o debugger w/ debugger w/o debugger w/ debugger w/o debugger w/ debugger w/o debugger
LUT 5,255 (36.5%) | 2,232 (15.5%) | 6,385 (44.3%) | 3,291 (22.9%) | 10,781 (74.9%) | 6,778 (47.1%) | 5,302 (36.8%) | 3,130 (21.7%)
LUTRAM 419 (7.0%) 211 (3.5%) 507 (8.5%) 282 (4.7%) 725 (12.1%) 427 (7.1%) 319 (5.3%) 145 (2.4%)
Flip-flop 5,245 (18.2%) 2,259 (7.8%) | 6,759 (23.5%) | 37,64 (13.1%) | 11,363 (39.5%) | 7,721 (26.8%) | 5,497 (19.1%) | 3,014 (10.5%)
BRAM 18 (36.0%) 16 (32.0%) 34 (68.0%) 32 (64.0%) 48 (95.0%) 45.50 (91.0%) 28 (56.0%) 26 (52.0%)
DSP 3 (4.5%) 0 (0.0%) 3 (4.5%) 0 (0.0%) 3 (4.5%) 0 (0.0%) 3 (4.5%) 0 (0.0%)
10B 0 (0.0%) 0 (0.0%) 6 (6.0%) 6 (6.0%) 28 (28.0%) 28 (28.0%) 0 (0.0%) 0 (0.0%)

TABLE III: Size of the example SSAs’ software TCB

SSA Corresponding FIRMWARE
SLOC Bytes SLOC text .data .bss Total
SSA-1 717 12,892 | 3,143 | 27,296 | 3,236 | 448 | 30,532
SSA-2 346 2,868 3,532 | 30,748 | 2,800 | 440 | 33,988
SSA-3 1,029 | 20,380 | 9,098 | 57,142 | 4,308 | 635 | 62,085
SSA-4 622 31,088 | 3,235 | 28,377 | 3,608 | 528 | 35,748

FPU). The Enclave-1, Enclave-2, Enclave-3 have a 128KB
BRAM, whereas Enclave-4 has a 32KB BRAM as their
main memory. The peripherals that belong to an enclave are
connected through a dedicated AXI Interconnect IP. Figure
shows the footprints of the four hardware designs on the Z7-
07S device. These figures demonstrate the configurable nature
of the BYOTEE hardware TCB and the physical isolation of
the enclaves from each other and from the hardcore processor.
Figure [5[a) shows the hardware design with a debugger,
which developers can use to debug the SSA and FIRMWARE
on the softcore, whereas all other designs do not have a
debugger for the minimum hardware TCB. The orange portion
of the footprint represents cells of the ZYNQ7 processing
system, whereas yellow represents softcore cells. The purple
straight lines represent the cells of BRAMs. The pink rectangle
represents the I/O ports, and in Figure [5[d) the rectangle on
top of the I/O ports represents an analog to digital conversion
module. Figure [5(e) represents hardware implementation of
two enclaves, namely Enclave-1 (yellow) and Enclave-4 (red),
to run SSA-1 and SSA-4, respectively. There are three types
of BRAM in this design. The purple straight lines represent

the contiguous memory of Enclave-1 (128KB), and the green
straight lines represent the contiguous memory of Enclave-4
(32KB). The ash straight lines represent the shared BRAM
(8KB) between Enclave-1 and Enclave-4. The blue portions
in Figure [5] represent the rest of the IPs used in the hardware
design. These include interconnects, interrupt controllers, etc.
Table [T presents each enclave’s hardware TCB and resource
utilization on the Cora Z7-07S board with and without a
debugger IP. As the table shows, the debugger IP significantly
increases the resource utilization of an enclave as it uses
three DSP slices, two BRAMs, and many other resources.
Since SSA-1 and SSA-4 do not use peripherals, Enclave-1
and Enclave-4 do not have any IOB. Figure [§] (in Appendix)
shows the block diagrams of the enclaves generated by the
HARDWAREBUILDER for the four example SSAs.

D. Security Evaluation

To demonstrate the security of BYOTEE, we report the
software TCB size of the four example SSAs and evaluate the
cold-boot attacks on DRAM and BRAM of the same board.

1) Software TCB Size: Table presents the size of the
software TCB for the four example SSAs and their correspond-
ing FIRMWARE. As the table shows, the size of FIRMWARE
increases as the SSA gets more complicated and needs more
services. Nevertheless, the run-time software TCB (SSA and
FIRMWARE combined) of SSA-3, which is a functional digital
right management music player, has only 10,727 SLOC,
representing a significant software TCB reduction from its
counterpart implemented as a TrustZone, e.g., TF-M [54] has



TABLE IV: FIRMWARE performance evaluation on the low-end softcore MicroBlaze CPU (Time in milliseconds; size in bytes).
The experiments show SSA-3 can verify, decrypt, and play 48KHz WAV music smoothly on the very low-end softcore CPU.

Binary | Input | Output Loading | Decryption | Integrity and | pre-execution | post-execution | Cleaning Suspend | Restore

size size size authenticity attestation attestation up and and
verification export execute
SSA-1 | 12,892 64 64 1.39 2784.56 118.54 153.94 154.79 0.54 3694.55 | 3609.65
SSA-2 | 2,596 N/A N/A 0.30 579.11 29.15 30.90 30.90 0.11 741.71 729.69
SSA-3 | 20,152 128 132 2.17 4414.32 185.30 258.30 260.50 0.90 5787.97 | 5638.76

TABLE V: Embench-IoT performance evaluation in millisec-
ond on softcore MicroBlaze CPU (Zyng-7000 FPGA imple-
mented, version 10.0, 100MHz, no cache, no FPU) and hard-
core Cortex-M4 CPU (16MHz, no cache, no FPU, officially
reported performance from ).

Application Description M4 3] | MicroBlaze
aha-mont64 Modulo generator 4,004 501
crc32 32 bit error detector 4,010 193
huffbench Data compressor 4,120 111
minver Floating point matrix in- 3,998 327
version
nettle-aes Low level AES library 4,026 245
nsichneu Computes permutation 4,001 237
primecount Prime counter n/a 193
sglib-combined | Sort, search, and query on 3,981 189
array, list, and tree
slre Regex matching 4,010 113
statemate Car window lift control 4,001 139
tarfind Archive file finder n/a 163
ud Matrix factorization 3,999 343
Geometric Mean 4,015 208

over 117K SLOC, or SGX application, e.g., the Gramine
library OS [4] has 83K SLOC.

2) Cold-boot Attacks on DRAM and BRAM: We evaluated
the feasibility of cold-boot attacks on DRAM and BRAM on
the same Cora Z7-07S board. In these experiments, we loaded
a bitmap image onto the DRAM and BRAM and measured
the DRAM decay at room temperature (20°C/68°F) and -
18°C/0°F after power reset (0 seconds) and losing power
for different intervals. We dumped the content of BRAM,
for which the Xilinx Zynq-7000 FPGA has a non-bypassable
hardware initialization mechanism after power up to clear
all the bits to 0s. As we discussed in even if the
BRAM is not initialized, cold-boot attacks on it are much
more difficult than on DRAM. Figure [] visualizes the cold-
boot attack results, which clearly show cold-boot attacks on
DRAM are feasible but not on BRAM.

E. Performance on the Low-end MicroBlaze Softcore CPU

We evaluate the performance of the low-end MicroBlaze-
powered enclaves, which provides a lower-bound performance
estimation of available softcore CPUs. We first evaluate
the performance using 12 Embench-IoT benchmark appli-
cations [14]]. We then evaluate the BYOTEE software run-
time performance by measuring the time cost of different
FIRMWARE operations.

1) Benchmark Performance Evaluation: To show the per-
formance of the MicroBlaze softcore compared to the Cortex-
M4 hardcore, we use 12 applications from the Embench-IoT

(d)20s

(a)0s (b)5s ()15 s (e) 30 s
) O0s () 1 m (h) 10 (i) 13 m  (j) BRAM ini-
tialization

Fig. 6: Visualizing DRAM decay after power down and
BRAM hardware initialization after power up on the same
Z7-07S board. We loaded a bitmap image (150x150 pixel;
90.1kB) on the DRAM and BRAM. We then measure 1)
DRAM decay at room temperature (20°C/68°F) after (a)
power reset (0 second) and (b) - (e) losing power for different
intervals; 2) DRAM decay at -18°C/0°F after (f) power
reset and (g) - (i) losing power for different intervals; and
3) (j) BRAM hardware initialization after power up. The
reconstructed image from the fully decayed DRAM is red
because half of the cells are measured as 1s and the other half
as Os. The reconstructed image from the BRAM is transparent
because all the bits are initialized to Os.

benchmarks [I4]. As Table [V] shows, the applications run
comparatively faster on the low-end MicroBlaze softcore CPU
than the hardcore Cortex-M4. For better performance, users
can choose more advanced softcore CPUs.

2) FIRMWARE Performance: We evaluate the time
FIRMWARE spends on the dynamic loading, decrypting, in-
tegrity and authenticity verification, attestation, cleaning up,
suspending, and restoring operations of three SSAs, As Ta-
ble [[V] shows, the time spent by the FIRMWARE on these oper-
ations is linear to the size of the SSA and its data combined. To
copy the protected SSA and its input from DRAM to BRAM,
FIRMWARE running on the Z7-07S spends around 1.07 ms
for every 10,000 bytes. To decrypt the protected SSA and its
data using 256-bit CBC mode AES, FIRMWARE spends around
2182 ms for every 10,000 bytes. The integrity and authenticity
verification costs around 93.43 ms for every 10,000 bytes. The
BLAKE-based pre-execution and post-execution cost around
124.77 ms for every 10,000 bytes. Cleaning up the BRAM
takes around 0.45 ms for every 10,000 bytes. The SHAS512-
HMAC and AES 256-bit with CBC mode based suspending
and restoring cost roughly 2834 ms for every 10,000 bytes.
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Flickr [59] S/T v v /7 v
TrustVisor [58] S/T v v 7/ v
Haven [21] X v v v/ v
SGXIO [81] X+H| v v v
SGX-FPGA [82] X+F| v v v v
KeyStone [52] R v v v
Sanctum [32]] R v v v v v
CURE [20] R v v v v
Composite Encl. [71] | R v v v / v
SANCTUARY [24] A v v v v
TrustICE [77]] A v v / v
vTZ [43] A+H| v/ v
Ambassy [45] A+F - — v - v A ans
uTango [62] M v v v
Graviton [80] G v v v v
HECTOR-V [60] N v / v v v
TEEOD [73] F v v/ v v / v
BYOTEE F Y v vV /I Y S

S: AMD Secure Virtual Machine extension, T: Intel Trusted eXecution
Technology, H: Hypervisor, A: Arm Cortex-A TrustZone, M: Arm Cortex-
M TrustZone, X: Intel SGX, F: FPGA, R: RISC-V, G: GPU, N: New
hardware design. —: not applicable.

TABLE VI: Comparison with other TEE projects

VIII. RELATED WORK

Many software or hardware solutions have been proposed
to address one or more limitations of existing TEEs, but none
tackle all the issues at the same time as BYOTEE does. Among
them, TEEOD [73]], which Pereira et al. independently devel-
oped at roughly the same time, is most related to BYOTEE.
Different from BYOTEE, TEEOD implemented SSA loading,
inter-enclave communications, etc., as hardware IPs. BYOTEE
offers additional security features, such as trust bootstrap,
attestation, etc. Table [VI]lists the benefits BYOTEE offers and
compares related work with BYOTEE.

To address the single TEE issue, vIZ [43]] provides each
guest virtual machine with a virtualized guest TEE by running
a monitor within the secure world, which virtualizes memory
mapping and world switching for the guest TEEs on Cortex-
A TrustZone. SANCTUARY [24] addresses the same drawback
by utilizing the memory access controller to provide multi-
domain isolation for sensitive applications. TrustICE [77] cre-
ates multiple isolated computing environments in the normal
domain and runs a monitor in the secure world. uTango [62]]
use the secure attribution unit of Cortex-M to create multiple
secure execution environments within the non-secure state.
The uTango kernel runs in the secure state privileged level,
while other applications, services, OSes are isolated in their
own non-secure state domains. On RISC-V, KeyStone [52]]

utilizes the Physical Memory Protection (PMP) feature to
create multiple enclaves. The TEE and REE in these solutions
time-share the CPU and other hardware resources, resulting in
side-channel attacks.

To enable isolated or trusted I/O paths between TEEs
and peripherals, CURE [20] enables the exclusive assignment
of system resources, e.g., peripherals, CPU cores, or cache
resources to single enclaves. Composite Enclaves [71]] builds
on top of KeyStone and extends the TEE to several hardware
components. HECTOR-V [60] uses a dedicated processor
as a TEE with configurable peripheral access permissions
for secure communication. CURE, Composite Enclaves, and
HECTOR-V were implemented on RISC-V. SGXIO [81]]
presents a hypervisor-based trusted path architecture for Intel
SGX. SGX-FPGA [82] builds a secure hardware isolation path
between CPU and FPGA. To eliminate side-channel attacks,
Sanctum [32] adopts isolation that combines minimally inva-
sive hardware modifications with a trusted software security
monitor on RISC-V.

There have also been attempts to utilize other hardware
computing modules to build TEEs. Graviton [80]], which
requires some hardware change, enables applications to of-
fload security and performance-sensitive kernels and data to
a GPU, and execute them in isolation. Ambassy [45] uses
FPGA logic fabric to construct a second TEE and the secure
world of TrustZone to control the secure loading of bitstream
to the FPGA. Different from BYOTEE, Ambassy does not
include softcore CPUs for developers to execute arbitrary
code. Other off-SoC dedicated processor solutions, such as
Google Titan [50], Samsung eSE [[69]], and Apple SEP [46]
uses external connections for communication between the
REE and TEE, making them vulnerable to physical probing
attacks. BYOTEE is also inspired by other isolated execution
environment solutions, including Flickr [59], TrustVisor [58]],
and Haven [21]], and other hypervisor-based protections, such
as Overshadow [29], InkTag [42], AppSec [68]], and Terra [35]].

IX. CONCLUSION

Even though existing hardware-assisted TEEs on commod-
ity computing devices have been widely adopted in com-
mercial systems, they have many issues that make them
either ineffective, inefficient, or untrustworthy. In this paper,
we present BYOTEE, which is a framework for building
multiple equally secure TEEs on-demand with configurable
hardware and software TCBs utilizing commodity SoC FPGA
devices. In BYOTEE, enclaves, which include softcore CPUs,
memory, and peripherals, are created on the FPGA, and the
BYOTEEFIRMWARE provides necessary software libraries for
the SSAs to use. Additionally, the FIRMWARE offers two attes-
tation mechanisms, namely pre-execution and post-execution
attestations, to verify the hardware and software stacks. We
implemented a proof-of-concept BYOTEE for Xilinx SoC
FPGA. The evaluation results on the low-end Zyng-7000
system for benchmark applications and example SSAs show
the effectiveness and performance of BYOTEE.
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APPENDIX

Figure[7] shows the top and bottom view of the Cora Z7-07S
development board with a single-core 667MHz Arm Cortex-
A9 processor, a Xilinx Zyng-7000 FPGA, and the connected
Pmod 12S2 audio device.

Figure [8a) shows the hardware for SSA-1 with a MicroB-
laze Debugging Module (MDM) [92] to help the developers
debug SSAs. A master interface of MDM is also connected
to the ps7_axi_periph to enable debugging from the hardcore
system side. Figure [8(b) shows the same hardware configura-
tion without the debugging module. As shown in Figure [§fc),
the hardware design of SSA-2 includes two peripherals that
are only connected to the FPGA. A pulse width modulation
IP [87] connects the RGB_LED ports, and an AXI GPIO
IP [85]] connects the button ports to the mb_axi_interconnect_0
interconnect. As shown in Figure Ekd), the hardware for SSA-
3 includes several more IPs for different functionality. An I12S

(b) Bottom view

Fig. 7: The Z7-07S board with a Pmod audio module for
experiments and evaluation: (1) an LED as an Enclave-2
peripheral used by SSA-2, (2) a button as an Enclave-2
peripheral used by SSA-2, (3) the Zyng-7000 SoC with a
hardcore CPU and FPGA, (4) a Pmod port and the 12S2 stereo
audio input and output device as an Enclave-3 peripheral used
by SSA-3, (5) the on-board USB JTAG/UART for debugging
and terminal output, (6) the SD card slot.

transmitter RTL (SPI) is added to interact with the Pmod 1252
module Codec module. Additionally, an AXI direct memory
access IP [91] with BRAM and an AXI stream data FIFO
IP [86] to offload audio data streaming computation from Mi-
croblaze are inserted by the HARDWAREBUILDER. An ADC
module for reading voltages, which is used for performance
monitoring [88]], is also connected. Figure [|e) represents the
hardware of SSA-4 with two enclaves. Both the enclaves have
their own BRAM, 128KB, and 32KB respectively. Enclave-
1 have a shared DRAM with Zynq processor as SEB for
communication, while Enclave-2 does not have any SEB
with Zynq. Instead of inter enclave communication, one 8KB
BRAM is shared between Enclave-1 and Enclave-2 without
the Zynq processing system access.
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(d) Hardware for SSA-3 without a Debugging Module (e) Hardware for SSA-4 without a Debugging Module

Fig. 8: Block diagrams of the hardware designs of the four enclaves for the four example SSAs. The ZYNQ processing
system represents the hardcore Cortex-A processor. The Enclave-1, Enclave-2, and Enclave-3 have one MicroBlaze softcore
processor, whereas Enclave-4 has two MicroBlaze softcore processors. The MicroBlaze interrupt interface is connected to an
AXI interrupt controller and configured with an AXI GPIO. All output GPIO to the softcore is connected to the hardcore
system for triggering interrupts. Two AXI Interconnects, mb_axi_mem_interconnect_0 for Microblaze and ps7_axi_periph for
Cortex-A processor are used to connect external IPs. The ZYNQ, Microblaze, and other IPs get primary clock input from the
clk_inl port. The reset port is connected to the reset interfaces of the IPs.
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