
InsectACIDE: Debugger-Based Holistic
Asynchronous CFI for Embedded System

Yujie Wang∗, Cailani Lemieux Mack†, Xi Tan‡, Ning Zhang∗, Ziming Zhao‡, Sanjoy Baruah∗, Bryan C. Ward†
∗ Washington University in St. Louis, † Vanderbilt University, ‡ University at Buffalo

Abstract—Real-time and embedded systems are predominantly
written in C, a language that is notoriously not memory safe. This
has led to widespread memory-corruption vulnerabilities in real-
time embedded cyber-physical systems (CPS). This is concerning,
as such devices are becoming increasingly networked with the
Internet of Things (IoT) and other communication technologies
(e.g., 5G), rendering them vulnerable to remote attacks. Attackers
have demonstrated how memory-corruption vulnerabilities can
be used to hijack program control flow to implement arbitrary
attacker-controlled logic. One class of defenses that has been
developed to prevent such attacks is called control-flow integrity
(CFI), which applies checks at control-flow transitions to ensure
the target is valid. Unfortunately, attackers have shown how to
divert control flow to seemingly valid targets in an invalid and
malicious sequence.

This paper presents InsectACIDE, the first holistic CFI for
embedded and real-time systems that does not require binary
instrumentation and that is context sensitive, i.e., it checks
that the sequence of control-flow transitions taken is valid,
not just individual transitions, thereby detecting such attacks.
InsectACIDE is implemented on an embedded Cortex-M pro-
cessor using the TrustZone trusted execution environment, and
holistic context-sensitive CFI is enforced for both applications
and the kernel. InsectACIDE uses hardware debugging features
on the Cortex-M processor and therefore does not require any
kernel or application binary modification. Experimental results
show that InsectACIDE incurs significantly less runtime overhead
compared to the state-of-the-art holistic CFI solution. Real-time
schedulability analysis is presented, along with a schedulability
evaluation, to demonstrate the tradeoff between stronger protec-
tion and real-time schedulability.

I. INTRODUCTION

Embedded and real-time systems are predominantly devel-

oped in C, which is notorious for being riddled with memory-

corruption vulnerabilities, such as buffer overflows [1]. Mi-

crosoft and Google have both independently reported that

memory-corruption vulnerabilities account for approximately

70% of the vulnerabilities in their software that is based on

memory-unsafe languages like C/C++ [2], [3]. Unless or until

such time as all code can be re-written in a memory-safe

language like Rust1, we are forced to reconcile the security

of such unsafe code by developing defensive techniques to

prevent exploitation based on such vulnerabilities. This is es-

pecially true as embedded and real-time systems are becoming

increasingly internet-connected through technologies like 5G

and the (Industrial) Internet of Things or (I)IoT, making such

vulnerabilities easier to exploit by a remote attacker.

1A lofty goal given the vast amount of established code bases and continued
development in unsafe languages given developer expertise and/or preference.

Memory-corruption vulnerabilities may take many forms,

such as a buffer overflow, underflow, or use-after-free vul-

nerability, among many others. Work on memory-corruption

security therefore considers a strong threat model in which an

attacker is assumed to be able to “write what where,” or write

arbitrary data to an arbitrary point in a writeable data region

(e.g., stack or heap). Over the years, attackers have become

increasingly sophisticated in their use of such vulnerabilities to

execute malicious logic, even if they cannot modify the code

itself due to being marked as not writeable [1]. These attacks

include code-reuse attacks, such as return-oriented program-

ming (ROP) [4], in which an attacker corrupts addresses in

a data space, such as a return address, to divert control flow

to attacker-chosen code. Indeed, attackers have demonstrated

sophisticated techniques that reuse small snippets of existing

code in clever ways. These classes of attacks are broadly called

control-flow hijacking attacks.

Control-flow integrity (CFI) has emerged as one of the

most effective techniques to protect systems against control-

flow hijacking [5]–[8]. In CFI, critical control-flow transitions,

such as invoking function pointers or function returns, are

instrumented with checks to determine whether the target

address is valid based upon a priori static code analysis.

However, attackers have devised increasingly sophisticated

techniques that ‘bend’ the control flow to seemingly valid

targets in an invalid and malicious sequence [7], [9], [10]. To

mitigate this, the runtime context is used in context-sensitive

CFI to further bound the attacker by reducing the equivalence

classes of the branching destination. In other words, instead

of only checking individual control-flow transitions, instead,

sequences of control-flow transitions are checked to be valid or

not. Yet, the added security benefit from context-sensitive CFI

potentially also comes with significant additional overhead due

to the added complexity of checking sequences of control-flow

transitions instead of individual ones.

In this paper, we propose to leverage hardware debugging

features commonly available in Arm systems to decouple the

process of context recording and context verification, reducing

the computational overhead through eliminating the worst-

case execution-time (WCET) expansion from in-line context-

sensitive control-flow verification. Our proposed technique

is called InsectACIDE2, as it uses the hardware-debugging

features to implement an Asynchronous Control-flow Integrity

2InsectACIDE is intentionally misspelled, but stops cyber varmints in their
(malicious control-flow) tracks, nonetheless.

360

2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)

2642-7346/24/$31.00 ©2024 IEEE
DOI 10.1109/RTAS61025.2024.00036

20
24

 IE
EE

 3
0t

h
Re

al
-T

im
e

an
d

Em
be

dd
ed

 T
ec

hn
ol

og
y

an
d

Ap
pl

ic
at

io
ns

 S
ym

po
siu

m
 (R

TA
S)

 |
 9

79
-8

-3
50

3-
58

41
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RT
AS

61
02

5.
20

24
.0

00
36

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

Defense for Embedded and real-time systems.

This hardware-based approach also introduces further op-

portunities to harden embedded systems to control-flow hi-

jacking. The hardware debugger traces all control-flow transi-

tions in the system, including between and among privileged

(kernel) and non-privileged (application) modes. InsectACIDE

therefore is holistic in that it checks both userspace and

kernelspace code for control-flow hijacking. The InsectACIDE

hardware-based approach is also novel in that it does not

require any binary modification to either the kernel or appli-

cations. This is beneficial to real-time and embedded systems

for several reasons. First, the whole memory layout is often

carefully crafted to maximize cache affinity or otherwise be

more amenable to WCET analysis. Second, embedded and

real-time systems often have highly customized and board-

specific toolchains, which could render it difficult to integrate

with security instrumentation.

Recognizing the need for stronger system protection, there

have been several works that explore the use of hardware

debugging feature for CFI protection [6]–[8], [11]–[16]. How-

ever, most prior work focuses on protecting server platforms,

except a closely related technique called SHERLOC [8], a sys-

tem that uses hardware-debugging features on Arm Cortex-M

platforms to enable CFI. However, SHERLOC only provides

basic CFI without considering the execution context or the

real-time implications [8], [17]. InsectACIDE aims to bridge

this gap in making the hardware-assisted asynchronous CFI

protection stronger by incorporating execution context and

while also targeting real-time predictability. From the real-

time-system perspective, the previous work of SHERLOC

conducts security checking exclusively in the execution of

interrupt handling, which is undesirable for real-time appli-

cations and analysis. Building on the observation that safety

problems of cyber-physical systems manifest in the physical

world, InsectACIDE adopts a new design paradigm where

the timing of security-policy enforcement is governed by the

timing of the physical world interactions (actuation more

specifically), decoupling from the cyber state event (debug

interrupt) as adopted by SHERLOC.

On the other hand, with all its advantages, it is important

to note that this new design paradigm comes with a cost.

Even though the new paradigm of decoupling the policy

enforcement from the system behavior measurement generally

applies to various system implementations, using hardware for

control-flow-event recording imposes an implicit constraint,

restricting it to platforms that support hardware-enabled pro-

gram behavior monitoring. Furthermore, while the decoupling

facilitates innovative ways to schedule policy enforcement,

the reliance on triggers based on the physical world’s impact

limits its application to real-time CPS, and it also imposes an

additional overhead on the computational load of the system.

This paper makes the following contributions.

• We propose InsectACIDE3, a novel context-sensitive,

3The artifact and source code are available on the website: https://
insectacide.github.io/.

Stack (Before)

LR: 0x1234

Buffer

Stack (After)

LR: 0xABCD

Buffer

0x….ABCD
….. ….. }Overwritten

Memory

Valid
Credentials;

Grant
Access;

…..

CodeAddress

0x1234

0xABCD

Fig. 1: Control-flow hijacking example.

holistic asynchronous CFI for embedded and real-time

systems that does not require binary instrumentation.

• We tackle several technical challenges to design

InsectACIDE, integrating asynchronous checking into

the scheduling, including minimizing the attack surface

induced by asynchronicity, and minimizing system over-

head.

• We implement a prototype on the Armv8-M architecture

and evaluate its performance on FreeRTOS.

• We present a response-time analysis and schedulabil-

ity evaluation to demonstrate the tradeoffs between

hardware- and software-based context-sensitive CFI.

II. BACKGROUND

In this section, we review how memory corruption can be

used by an attacker to hijack control flow, which we aim to

prevent in our defense. We then review relevant background

on the hardware features we leverage in our implementation.

A. Control-flow Hijacking Attacks

Control-flow hijacking attacks are a class of cyber attacks in

which an attacker exploits a memory-corruption vulnerability

to redirect control flow to execute code of their choosing.

Given the extensive use of software and communication net-

works in cyber physical systems, the potential for malicious

actors to tamper with the control flow of software components

presents a tangible threat. The reliability and correct operation

of these systems, especially safety-critical systems, are of the

utmost importance to prevent the possibility of financial loss,

injury, or even loss of life.

Figure 1 shows a simple example of a control-flow hijacking

attack on Arm. In this example, there is a buffer-overflow

vulnerability that is exploited by an attacker to write data

past the intended buffer end and overwrite part of the stack

including the Link Register (LR). Here, the original linked

address in executable memory is 0x1234, which points to a

function to validate some credentials. However, the attacker is

able to overwrite that address with 0xABCD, which points to

a function to grant access to some sensitive data. Thus, when

the thread returns from the currently executing function, the

access-granting function is run instead, and the integrity of

control flow is violated.

There are two main classes of control-flow hijacking at-

tacks [18]. The first is code-injection attacks, in which the at-

tacker injects their own malicious code into the address space,

for example via a buffer overflow, and then redirects control

flow to that code. Thus, the hacker is able to execute arbitrary

361

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

code. Many modern systems prevent this type of attack by

enforcing permissions on code and data that writeable memory

is never executed (DEP/W⊕X) [1].

The success of defenses such as DEP/W⊕X have forced

attackers to evolve and create attacks in which they cannot

inject malicious payloads, but instead must reuse existing

code. Such attacks are called code-reuse attacks, and our

previous example is an example of such an attack. We note,

however, that our previous example was rather simplistic, and

in practice attackers may not be able to divert control flow to

a single function to achieve their malicious intents. Attackers

have demonstrated how to corrupt multiple stack frames to

“string together” a sequence of gadgets or snippets of existing

code in order to execute arbitrary logic in a specific type of

attack called a return-oriented programming attack [4].

B. Holistic Control-flow Protection and Context Sensitivity

CFI is a promising solution for protecting systems against

control-flow hijacking attacks by enforcing that all control

flows follow the control-flow graph (CFG) constructed from

static analysis. While many CFI implementations can only

protect non-privileged-mode programs [6], [7], [10], [12], [19],

some of them can provide holistic protection for the entire

non-secure-state program, including both non-privileged and

privileged modes [8], [20], [21].

However, CFI checking can be coarse-grained due to the

conservativeness of static analysis, such that the set of legiti-

mate transfer targets, known as the equivalence class (EC), can

be large, leaving potential space for attackers to maliciously

swap targets within the EC undetected. Therefore, context-

sensitive CFI has been proposed to leverage context infor-

mation recorded during runtime, such as callsites and branch

conditions, to provide more fine-grained protection [6], [7],

[10], [12], [19].

C. Armv8-M Architecture

Memory protection. In Armv8-M, all memory, peripherals,

and the processor’s control registers share the same address

space, i.e., there is no virtual memory. For memory protec-

tion, Armv8-M features a Memory Protection Unit (MPU),

which is a hardware component that enables developers to

specify the start address, length, and access permissions for

memory regions. MPU includes MPU S and MPU NS to

control access permissions for either secure or non-secure

state. A permissions violation will result in a MemManage
fault. TrustZone is an architectural security extension that en-

forces resource isolation between the untrusted normal world

execution and the trusted secure world execution on Arm

platforms. a memory region can be configured as secure, non-

secure callable (NSC), or non-secure using a combination of

the TrustZone hardware Secure Attribution Unit (SAU) and

Implementation Defined Attribution Unit (IDAU) to specify

the memory attributes.

Debugging features. The Armv8-M architecture features two

hardware features we leverage in this work: a tracing unit

called the Micro Trace Buffer (MTB) and a Data Watchpoint

and Trace unit (DWT). Both the MTB and DWT exception

handlers can be configured to be processed only in the secure

state. The MTB captures all non-sequential program-counter

changes on the microcontroller, including calls, branches, and

exceptions. It stores trace records, i.e., source and destination

address pairs of the non-sequential PC changes, in the trace

buffer, a circular buffer within the SRAM area that can be

configured as secure memory. When a predefined watermark is

reached, the MTB can trigger a Debug Monitor (DebugMon)

exception, which can be handled to process the control-flow

data. The DWT provides special registers called comparators

that can monitor instruction executions and data operations to

specified addresses and trigger a DebugMon exception when

there is a match. Therefore, by configuring these compara-

tors to specific addresses, the DWT can implement program

breakpoints.

III. THREAT MODEL

In this work, we focus on detecting control-flow hijack-

ing attacks within the entire non-secure state program. We

adhere to the common threat model used in prior CFI work

that aim to defend against such powerful attacks [8], [20],

[21]. Similar to other security works that leverages trusted

execution environment [22]–[24], we assume the presence of

vulnerabilities within the non-secure-state program that allow

attackers to arbitrarily read and write data memory, and can

use code-reuse attack to achieve arbitrary code execution.

However, we assume the secure world and hardware are

vulnerability free. Furthermore, code injection in normal world

is prevented using existing memory-protection technologies,

such as the MPU. Different from existing CFI solutions with

kernel protection [25], [26], InsectACIDE does not assume

the application and kernel are running as a single binary in

the privileged mode. Similar to previous CFI works [5], [8],

[20], [21], [25]–[27], we do not consider non-control data

attacks [9], [28], such as Data-Oriented Programming [29],

that corrupt non-control variables, potentially increasing the

tasks’ WCET. Similarly, hardware attacks [30], side-channel

attacks [31], and availability attacks [32]–[34] are out of scope.

IV. INSECTACIDE DESIGN

In this section, we will first summarize the design goals

then explain how the InsectACIDE achieves those goals.

A. Design Goals

G1 Context-sensitive control-flow integrity. In order to miti-
gate advanced control-flow hijacking attacks, such as control
jujutsu [35], context-sensitive control-flow integrity should be
enforced.

Traditional CFI approaches, including those described in

Sec. II, check that each individual control-flow transition is

valid. However, it is possible to construct a malicious sequence

of control-flow transitions made out of individual transitions

that are in fact valid [9], [35]. A stronger form of control-

flow integrity therefore checks that the sequence of control-

flow transitions is valid, rather than simply individual ones.

362

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

This is known as context-sensitive control-flow integrity [7],

[10], [12], [14], and it checks not only whether an individual

control-flow transition is valid, but if it is valid within the given

context. Context-sensitive control-flow integrity is therefore a

stronger form of protection than ordinary CFI.

G2 Holistic protection. Control-flow protection should be
provided for all non-secure-state code, including both non-
privileged (applications) and privileged (kernel) code.
CFI is usually applied at compile time and therefore only pro-

tects an individual application. While there have been several

efforts to include CFI in the kernel [5], [8], [20], [21], [25],

[26], InsectACIDE aims to provide holistic protection that

checks all application code and kernel code while supporting

the application and kernel privilege separation.

G3 No binary modification. For compatibility, there should
be no required binary modification of the protected code.

Much previous work on CFI has applied compile-time

transformations to insert checks in the binary. However, this

requires recompiling the application and may invalidate the

WCET analysis of the application. Furthermore, many em-

bedded systems use highly customized, often vendor-specific

toolchains to build and deploy software. Preserving the binary

allows transparent implementation of CFI agnostic to specific

toolchains.

G4 Real-time adaption. To satisfy real-time requirements, the
system should be designed for real-time predictability.
Using the MTB for tracing events allows for the asynchronous

processing of integrity checks. Our goal is to enable integrity

checks during idle time, where possible, while also supporting

real-time schedulability analysis.

G5 Control-guided protection. Control-flow protection must
be enforced before physical-control outputs are allowed.
Our context-sensitive control-flow protection decouples the

recording and checking of control-flow transitions. This could

in theory create a window of opportunity for an attacker to

achieve malicious effects until the time of check. To mitigate

this threat, we require that checks are completed before any

control outputs for a given task are allowed. We must therefore

intercept such events and enforce that all checks are completed

so as to prevent any malicious control actuation.

B. InsectACIDE Architecture
An overview of InsectACIDE is shown in Fig. 2. The

hardware MTB (recall from Sec. II) is used in order to record

control events without any software instrumentation (G3). The

MTB also records control events in both user and kernel mode,

allowing for holistic control-flow protection (G2). In order

to fully implement holistic control-flow protection, we must

check all control-flow events, which requires periodically pro-

cessing the MTB contents, and we design our implementation

so as to minimize the analytical worst-case interference for

such processing triggers to improve real-time predictability

(G4). Finally, we use TrustZone and the debugging features

(recall from Sec. II) to intercept control and switch to the

secure world at any control-output time (G5), and finish all

necessary checks for context-sensitive control-flow protection

�
��

�
��

	�
�

�
�

����	�

������

����	�

����	�

�
��

����	�

��������� ��
��

��
	��

��
��

��
���

�

����	�

�����

���������

���	�����
������!	 �����	"���
�����	 �����	�����
��!	

��
��

�
�	

�����	

Fig. 2: Overview of InsectACIDE.

(G1). In the rest of this section, we elaborate upon the

details of this design, and in Sec. V, we describe salient

implementation details necessary to realize this architecture.

Hardware-assisted control-event recording. The MTB

records all control-flow events on a core for all privilege levels,

including both non-privileged and privileged execution modes.

The traced control-flow events are stored in a secure memory

buffer in the TEE, making them immune to attacks from either

a malicious application or a corrupted kernel. The size of

the MTB is configured through a specific register, referred

to as MTB->WATERMARK, the maximum buffer size varies on

different platforms (4KB in our evaluation). Once the buffer

is full, an exception is raised that is handled in the TEE. This

serves as an InsectACIDE entry point.

Context-sensitive control-flow protection. When an excep-

tion is raised, the recorded trace data must be copied from

the buffer to device memory before returning to normal mode

for later context-sensitive checks. We note that the MTB

trace data contains all non-sequential control-flow events, and

this may include events from multiple separate processes and

context switches into and out of the kernel to handle system

calls or other interrupts. In comparison to traditional single-

event CFI, in our context-sensitive control-flow protection we

check a sequence of control-flow events. As that sequence is

often process-specific, an incorrect sequence can lead to false

positives. Therefore, when parsing the MTB trace data we

must demultiplex the single stream of control-flow events into

per-process and kernel-related control-flow events so that they

can be checked separately.

A straightforward method, similar to prior work [8], is

using the address ranges of each application for demultiplexing

(recall, our target platform is an Arm Cortex-M microcon-

troller, which has only an MPU with a single linear address

space, rather than an MMU and virtual memory). However,

such demultiplexing can be incorrect because some processes

may share code segments due to shared libraries or kernel

function calls. To demultiplex control-flow events correctly in

order to ensure the soundness of context-sensitive checking,

InsectACIDE adds additional procedures during trace process-

363

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

resume tracing

 region exit

intercept with
hardware breakpoint

untraced code
entry

start filtering

interrupt
disable

MTB
disable

MPU
config

execute without
tracing

end filtering

MTB
enable

interrupt
disable

MPU
config

interrupt
enable

interrupt
enable

2

1

3

4 5

ex
ce

pt
io

n

untraced code body traced code

Fig. 3: Binary-preserving selective tracing.

ing by identifying context-switching from events of interrupts

and the kernel, and managing trace data with an assigned

process identifier, as detailed in Sec. V.

Asynchronicity-induced attack surface. By deferring checks

until control output (G5), the attacker could theoretically cause

a series of malicious control-flow events that are not checked

until after an attacker has accomplished their malicious intent.

To ensure that attackers cannot exploit this time window,

InsectACIDE enforces that all checks must be completed

before critical operations. Critical operations can include ac-

cessing sensors and actuators. On Cortex-M microprocessors,

accessing peripherals is similar to accessing specific memory

addresses. A straightforward approach is to use software

instrumentation to insert reference monitors to track access to

these addresses and verify the status of trace checking when

encounters occur. However, this approach requires binary

instrumentation, violating G3. InsectACIDE instead leverages

the hardware features of the DWT. Specifically, InsectACIDE

can set the comparators of the DWT to specific data or code

addresses to trigger an exception. Both exceptions can then

be trapped in the TEE, and the status of trace checking can

be subsequently verified. Similarly, since the MPU NS can

configure the access rights of memory regions, InsectACIDE

configures memory regions for these peripherals to be read-

only using the MPU NS. Consequently, every write operation

to them will trigger an MPU fault exception, captured by the

secure state via setting a DWT comparator to the exception

handler entry. As a result, because MPU NS, DWT, and MTB

configuration can only be made within TrustZone secure mode,

attackers cannot exploit the asynchronicity time window to

bypass checking.

Binary-preserving scheduling integration. In order to mini-

mize the real-time impacts of InsectACIDE (G4), we perform

as much trace processing as possible during otherwise idle

time. While conceptually straightforward – process and check

any MTB contents at idle so that new tasks start with a

fresh MTB – care must be taken to implement this without

modifying the scheduler or other applications in the normal

mode (G3). In FreeRTOS there must be at least one ready task

at any point in time, including the idle task. If there is nothing

left to process, the idle task spins in a busy loop waiting for

an asynchronous event to trigger a new task. However, this

busy-waiting loop rapidly fills the MTB as each invocation

of the busy loop adds events to the MTB. This may leave the

MTB nearly full when a new task arrives, requiring processing.

Therefore, we need to disable the MTB during idle time after

flushing its contents. However, we must also ensure that the

MTB is re-enabled before any other tasks are allowed to

run, otherwise those control events would not be captured or

checked. Ideally, one can simply have the scheduler turn off

MTB recording before switching to the idle task. However, this

requires modification of the existing system either with source

code modification or binary rewriting. Neither would meet the

binary-preservation design goal (G3). Instead, InsectACIDE

leverages the DWT feature to trap execution back to the secure

world upon entry into the idle task. By processing the idle task

inside the secure world, it is possible to ensure that MTB is

turned off and on appropriately within the idle task. It also

ensures that upon context switch MTB is turned back on,

where the timer interrupt that initiates the scheduler is first

processed by the secure world before passing it back to the

normal world.

Binary-preserving selective tracing. While the MTB serves

as a powerful tool for recording all control-flow events, it

does not support selective tracing. In context-sensitive CFI,

the useful control-flow events (or CFI-relevant events) are

either security-related events that should be checked, including

all indirect branches, or context-related events, such as the

events of function calls (when choosing callsite as context).

The recording of other events that are CFI-irrelevant imposes

unnecessary overhead on trace processing. For example, as

evaluated in Section VI, when choosing the callsite as the

context, 52% of the events are neither security-related nor

context-related. These events must be processed and filtered

when flushing the MTB, which can introduce an additional

runtime overhead of 48%.

To reduce the real-time impact, InsectACIDE uses a se-

cure selective tracing approach that enables or disables the

MTB in a binary-preserving manner. Specifically, for code

segments that generate only superfluous events, InsectACIDE

turns off the MTB during their execution. In practice, such

code segments can be identified during WCET analysis, as

analyzing the worst-case scenario requires a full understanding

of the branching structures. More details on selecting such

code segments can be found in Sec. V. However, even with

the code segments selected, there are additional challenges

due to the limited number of debugging breakpoint registers

for detecting entries and exits. This is often exacerbated by

the fact that many segments may not have well-defined exits.

To tackle this, we propose to use the MPU, particularly the

normal world banked register, MPU NS to setup a sandbox by

configuring any code outside of the segment as non-executable

(NX), as illustrated in Fig. 3. Upon exiting the sandbox, a

memory access fault will be raised by the hardware, trapping

the execution of the system to the memory fault handler and

364

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Region Selection

1Input: regions, P , K
2Onput: s regs // selected untraced regions

1 s regs ← map()
2 for r in regions ∪ {entry} do

/* Select from regions reachable from r */
3 p, regs ← reachable(r, P)
4 scores ← [score(p,r’,regs) for r′ in regs]
5 s regs[r] ← topKregs(scores) // top-K regions

6 Function score(p,r,regs):
7 Rs ← {}

/* if r not dominated by any other region */
8 if !domed(r,regs) then

/* get regions dominated by r */
9 Ds ← domRs(r, regs)

/* select K regions in sub-program p
from regions Ds by recursion */

10 Rs ← RegionSelection(Ds, p,K)[r]

/* reduced number of worst-case trace */
11 return W(p)− [W(p\Rs) + ε ∗ |Rs|]

the secure world. This empowers the secure world to re-enable

the MTB monitoring even if there are vulnerabilities inside this

code segment that might have given the adversary the power

to run arbitrary code. As a result, this approach reduces the

number of traced events without sacrificing security, thereby

reducing the WCET of trace processing. The detailed security

analysis is shown in Sec. VII.

V. IMPLEMENTATION

InsectACIDE is built on a single-core Arm Cortex-M33

platform, and the implementation contains four parts, control-

flow analysis, runtime configuration, selective tracing, and

trace processing.

Control-flow analysis. To validate control-flow transfers,

InsectACIDE conducts context-sensitive control-flow analysis.

Context can take various forms; in the prototype, function

call sites are selected as the context. Static analysis can be

applied at either the source-code level or the binary level,

with the difference between the two lying in the additional

effort of binary reverse-engineering, which can affect analysis

precision. Then, the analysis results are encoded as a table for

runtime reference.

Runtime configuration. There are several key system se-

curity configurations. During the system boot, InsectACIDE

routes the interrupts of DWT and MTB into the secure state

and configures the MPU NS to ensure the code integrity of the

entire system. Moreover, InsectACIDE sets DWT comparators

at the entry of the MPU fault handler to enable the secure

state to capture the non-secure state’s MPU fault, as well

as the idle task to detect system idleness. Such MPU NS

region and DWT watchpoint usage (out of the total 8 MPU NS

regions and 4 DWT comparators in our evaluation platforms)

are minimally required for system implementation. In addition,

InsectACIDE uses SAU and IDAU to configure the necessary

address ranges relevant to the configurations of the above-

mentioned hardware as secure memory ranges, accessible only

by the secure state. Furthermore, the memory used by the

secure world would be configured as secure memory using

SAU and IDAU to specify the secure world attribute to prevent

malicious tampering from DMA.

Selective tracing. The key idea of selective tracing is to

disable MTB on certain code regions in which no CFI-relevant

events will be generated. However, such mechanism requires

not only limited hardware resources (DWT comparators and

MPU regions) to track the entry points, but also the MPU-

enforced sandbox to detect exits and re-enabling the MTB.

This poses a non-trivial problem of determining “which K

code regions” should be monitored. In this problem, limited

breakpoints should be utilized to detect code regions that have

a higher probability of being executed soon and can yield

enough performance gain by turning off MTB even with the

overhead of MPU sandboxing configuration.

The first step is to identify the candidate regions where

performing selective tracing will be beneficial. The idea is to

identify the code regions in the control-flow graph that only

contain CFI-irrelevant events, including direct and conditional

branches (based on callsite as context). These partitioned

code snippets are labeled as candidate regions if selective

tracing offers performance benefit. To determine if there is

performance benefit, InsectACIDE compares the estimated

time to process the maximum number of traces that can be

generated by the code snippet to the sandbox overhead. The

worst-case traces are obtained from a tool we constructed, W ,

based on aiT [36], an industry-standard WCET analysis tool,

by finding the path that can generate the maximum number of

control-transition instructions. Once the benefits of individual

candidate regions are identified, the next step is to look into

the temporal proximity of the code snippet. The allocation of

limited hardware breakpoints to track candidate regions can be

formulated as an optimization problem, which InsectACIDE

leverages a greedy algorithm based on a computed priority

score, as described in Alg. 1. Specifically, the algorithm

calculates a score for each reachable region at each potential

reallocation point (including region candidates and task entry)

to prioritize the region that offers the most benefits in reducing

the total trace processing time. Intuitively, regions that always

execute earlier (i.e., dominators) than others (i.e., dominance)

are prioritized because their breakpoints can be reallocated

to later ones after exiting. As such, a dominance region is

assigned a 0 priority (Line 7 to 8), since breakpoints are

re-assigned at its dominators’ exit. The analysis results are

encoded in a map at compile time.

Trace processing. Since selective tracing cannot filter out

all CFI-irrelevant events, these events are filtered on the fly
when reading from the MTB. Only the remaining trace data

is moved to device memory for further processing.

Control-flow events are recorded indiscriminately by the

MTB. To check a sequence of control-flow events, traces

recorded by the MTB require additional processing to differen-

tiate control-flow events between different tasks and interrupts.

InsectACIDE follows the existing work [8] to differentiate

365

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

interrupt events from others and handle (possibly nested)

interrupts, ensuring that interrupt entry and exit addresses

always match. InsectACIDE is built on top of this interrupt

handling method to demultiplex events for different processes.

Specifically, since most context switching is also triggered by

interrupts, with the guarantee of consistency between interrupt

entry and exit ensured by the prior approach, InsectACIDE

can determine the entry points of process release and re-

sume by comparing the task addresses. After the detection,

InsectACIDE retains the process identifier and transfers all

subsequent non-interrupt events to the corresponding process

buffer until new interrupt events occur, requiring an update of

the identifier accordingly. A corner case arises when two tasks

may resume at the same address if context-switch interrupts

happen to occur at the same code location, making it difficult

to distinguish which task is currently executing. However, this

issue can be resolved by considering the scheduling policy.

For example, in a fixed-priority scheduler that uses a FIFO

policy for tasks with equal priorities, the later preempted

task always has a higher or equal priority than the one

preempted earlier. Therefore, when the corner case occurs, the

executed task is the one that was preempted later. As a result,

control events, even for shared code, can be distinguished for

different tasks. With the demultiplexed traces, InsectACIDE

validates backward edges to enforce functions to return to

their call sites in a manner similar to [8]. For forward-edge

transfers, InsectACIDE uses trace data (context) stored in

the corresponding buffer to retrieve offline-computed EC for

validation. Once the validation is complete, the checked trace

is removed from the buffer.

VI. EVALUATION

The evaluation is conducted on the Arm Versatile Express

Cortex-M prototyping system (V2M-MPS2+) [37], which is

configured as a single-core Cortex-M33 microcontroller using

the AN505 FPGA image [38]. The device is equipped with

a 4MB code/flash region and 4MB SRAM, including a 4KB

allocation for the MTB trace buffer.

A. Performance Evaluation

To measure the performance impact of InsectACIDE, we

utilize real-time benchmarks to assess the system overhead.

Experiment setup. InsectACIDE is designed to work on

embedded microprocessors running a real-time operating sys-

tem; therefore, we selected programs in the TACLeBench

benchmark [39] and integrated them into FreeRTOS. Since this

section aims to understand the general system overhead, each

benchmark program is evaluated individually as periodically

released tasks. While Sec. VI-C assesses the security benefits

of context sensitivity, the overhead of context-sensitive checks

in this section is simulated at direct function call sites due

to the absence of indirect function calls in the benchmark

programs. Additionally, an operation that writes to a fixed

memory location is inserted at the end of the program to

simulate control outputs. We configure the DWT to set a

���
���

�
��	

�
��

��

�	

�

��

�
��

��
	��

� ��� ��� ��	
���

��
�� ���

���
��	

�

�	

���
�	�

�	 ��
�

���
��

�
��

	��
����
� ��

��
��

�
���

�� �	

�
��

���
���
���
���
���

��
�	

��
��

��
��

��
��

� !
" #$%�&����

$�����'��
��
$�����(�����	�
�
)�	�����	�*�����

Fig. 4: Runtime-overhead breakdown.

���
���
�

��	

�
��

��

�	

�

��

�
��

��
	��

� ��� ��� ��	
���
��
�� ���

���
��	
�

�	

���
�	�
�	 ��
�

���
��
�

��
	��
����
� ��

��
��
�

���
�� �	

�

��

���

���

���

��
��
��
	��

	��
��
��
	�

� �����
�� !��	� !��	���
���"!����

Fig. 5: Event quantity and event processing overhead reduction

with selective tracing.

breakpoint to this memory location and allocate one of eight

MPU regions for selective tracing.

Runtime overhead. The runtime overhead of InsectACIDE

comprises four components, as shown in Figure 4.

Specifically, (i) MTB flushing involves reading from the

MTB and pre-filtering events that are not of interest. (ii) Trace

decoding is conducted asynchronously to further separate the

pre-processed trace data into meaningful checking sequences

based on different interrupts and tasks, which are then (iii)

validated and removed. (iv) Interrupt handling encompasses

the time spent on exceptions/interrupts related to the MTB be-

coming full, selective tracing, and real-time integration mech-

anisms. Handling these exceptions and interrupts includes

hardware-configuration operations and entering and leaving

the TEE.

MTB flushing and selective tracing – The majority of the

runtime overhead is attributed to MTB flushing, resulting in

an average runtime expansion of 51%. Further investigation

reveals that this is mainly due to the speed limitation of the

MTB. Reading from the MTB takes approximately twice as

long as reading from device memory. The variation in MTB

flushing overhead among different benchmarks is primarily

linked to the utilization of selective tracing. As depicted in

Figure 5, selective tracing, on average, can reduce the number

of traced events and event processing overhead by 52% and

48%, respectively, highlighting the effectiveness of this ap-

proach. The overhead variation between Figure 4 and Figure 5

is highly correlated. The more effective selective tracing is, the

366

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

lower the overhead of MTB flushing. Among the benchmarks,

the program recur exhibits the highest MTB flushing overhead

and the least effective selective tracing. This is because the

program relies heavily on non-filterable recursive function

calls rather than filterable loops. Consequently, filtering traces

cannot offset the overhead incurred by dynamically turning

the MTB hardware on and off.

Decoding, validation and interrupt handling – Asynchronous

trace decoding incurs the second-largest overhead of 14%.

This is because performing context-sensitive checking re-

quires the separation of interrupts and different tasks. This

separation involves not only identifying control-flow types

from raw address data but also extracting context-switching

events from traces. Subsequently, asynchronous control-flow

checking incurs an overhead of 6% with the decoded traces.

In terms of interrupt handling, InsectACIDE experiences a low

overhead. This is primarily because the MTB, idle breakpoint,

and selective-tracing runtime configuration handling occur

infrequently compared to trace processing.

Comparison with alternative approaches - We evalu-

ated InsectACIDE against both hardware-tracing-based and

software-instrumentation-based alternative holistic CFI ap-

proaches designed for Cortex-M. We chose SHERLOC [8],

an approach that also leverages the MTB, as the hardware-

based comparison target. To compare with software-based

approaches, we implemented callsite-sensitive CFI as well as

a stronger variant, path-sensitive CFI. For path-sensitive CFI,

our comparison focused only on recording, since checking

is scheduled asynchronously, and the overhead of context

recording includes the recording of all conditional branches,

function calls, and indirect branches (i.e., if-else statements,

function calls, and returns).

As shown in Figure 6, the average runtime overhead for

InsectACIDE with callsite context is lower than the overhead

of SHERLOC because InsectACIDE employs selective tracing

while SHERLOC does not. InsectACIDE exhibits a similar

average overhead compared to the software-based approach

with callsite context. However, when more context, such as

path-sensitivity, is employed to provide stronger protection,

InsectACIDE outperforms the software-based approaches with

only a 149% average overhead, while the software-based

approach incurs a 364% average overhead. The difference

arises from the requirement of holistic protection for the entire

non-secure state program. To achieve this, the trace data must

be placed in the TEE to prevent attackers from corrupting

it. These operations involve context-switching between the

normal and secure mode, thereby introducing significant over-

head. In contrast, InsectACIDE automatically uses hardware

to trace within the TEE, resulting in fewer context-switches.

In summary, InsectACIDE offers runtime-efficiency benefits

while implementing a stronger form of context-sensitive secu-

rity checks.

Memory consumption. Considering that some trace data

is temporarily stored in device memory, although they are

removed later after being checked, an extreme case can occur

when the temporarily stored trace data exceeds the device

memory limit. In such a case, InsectACIDE has to pause to

check. However, our measurement of the memory consump-

tion of InsectACIDE in the worst-case scenario – where there

is no trace checking and the trace data are not removed –

shows that the benchmark tasks can generate 35KB of trace

data on average, while our board has 4MB of memory. After

checking the control-flow data, the associated memory can be

freed, and therefore, this memory limitation should not be an

issue in practice.

Component Predictability. Given that InsectACIDE does not

add any inline instructions, the introduced overhead is related

to trace processing and interrupt handling, with different

components exhibiting varying levels of predictability. Since

the defense is deployed in real-time systems, it is essential that

the predictability is also well understood.

Among all the components, trace filtering and the handling

of DebugMon and idle-task preemption interrupts exhibit

remarkably predictable execution times, where the difference

between worst-case execution time and best-case execution

time is very small. The reason for the trace filtering component

is that its operations mainly involve referencing instruction

opcodes and tables. For the latter component, it is due to

relatively fixed workloads, which include performing context

switching and modifying corresponding hardware registers.

However, the components of trace decoding, control event

validation, and selective tracing configuration can exhibit

much larger variations in execution time, where the worst-case

execution time can be up to 870% of the best-case execution.

This is due to the variability of trace events in different

program executions, and the need to reallocate the limited

number of hardware breakpoints, which involves referring to

a pre-defined reallocation policy.

B. Schedulability Analysis

In order to evaluate the real-time impacts of InsectACIDE

in comparison to other CFI approaches, we conducted a

schedulability evaluation. This evaluation includes overheads

and parameter values inspired by our previous empirical

results. The goal of this evaluation is to demonstrate how

these overheads affect real-time schedulability, especially in

comparison to other CFI approaches.

Modeling. Before we detail the specific parameters of our

schedulability evaluation, we first must describe our task

model and how we include the effects of the InsectACIDE

overheads. We assume a standard sporadic task model in which

there are n tasks, {τ1, . . . , τn} that release an infinite sequence

of jobs with a minimum inter-arrival time of Ti and a WCET

of Ci. We assume implicit deadlines, so the deadline of each

job is Ti time units after its release. We assume a fixed-priority

scheduler as this is what FreeRTOS supports, and we assume

tasks are assigned rate-monotonic priorities.

We then must incorporate the temporal effects of

InsectACIDE, including flushing the buffer and applying the

367

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

������� ��	
��� ��
�	 �
��
�����	��� ��� ��� ��	 ������� ��� �����	�
�	 ����	��	 ��� ������ ��	��+� ��� �� ����� ����� �	

���

���

���

���

��
�	
��
��
��
��
��
��

 !
"

�����	� �!"#������	� �����	� �!"#��	� $
�	,���#������	� $
�	,���#��	� $%"�&�

Fig. 6: Comparison with alternative approaches.

checks, in our response-time analysis. Recall the standard

response-time analysis for fixed-priority tasks:

Ri = Ci +
∑

τj∈HP(τi)

⌈
Ri

Tj

⌉
Cj . (1)

We now demonstrate how to incorporate the overheads of

InsectACIDE. We first review the relevant overhead sources.

Recall from Sec. IV that a DebugMon exception must be

handled to flush the buffer when the MTB is filled. This

requires iterating through the entire buffer. This must be done

every time that the MTB is filled, regardless of which task is

running, as otherwise control-flow events will not be recorded

for checking. We make the conservative assumption that every

task has a control output, or another output that must be

checked before the deadline of the task. Therefore, there is

a corresponding check that must also be completed before the

deadline, so we model this as a per-event overhead, which we

define as δ.

We have also measured the rate at which control-flow events

occur, and thus can determine how often the MTB is filled.

We augment the sporadic task model to include the maximum

number of control-flow events, Ei, that can occur during a

job of τi. In our schedulability study we assume that there is

a control-event frequency Fi, and the number of control events

in task τi is determined as Ei = FiCi. We assume the MTB

is of size S.

Now we derive how to incorporate these modeled overheads

into our response-time analysis. By definition, each job τj that

runs in the scheduling window of τi introduces Ej = CjFj

control events, each of which introduces δ additional demand.

We also observe that we cannot guarantee that the buffer is

empty at the critical instant, and must therefore assume that the

buffer is full and will trigger an interrupt immediately after the

critical instant, forcing a check of the full buffer size, assumed

to be S. Thus, our resulting response-time analysis including

overheads is adapted from Eq. 1 as

Ri = Sδ + Ci + Eiδ +
∑

τj∈HP(τi)

(⌈
Ri

Tj

⌉
(Cj + Ejδ)

)
. (2)

Note that this assumes that the control outputs occur at the

end of τi, and thus all control-flow events in the task must

be checked before the control output. Therefore, at the end

of the task, a MPU/DWT fault will trigger InsectACIDE to

check any buffered control-flow events to be processed, even

if the buffer is not full. (We note that the previous work of

SHERLOC [8] behaves similarly to InsectACIDE except that

it does not apply any filtering and does not enforce checks

that are as strong as ours; hence it, too, can be modeled as

Eq. 2 by using different values for δ and F .)

In practice, not all tasks may have control outputs, but there

may be dependencies between non-control-output tasks as the

output of one task may be the input of the next. In such cases it

may be possible to defer checks of non-control tasks until after

their deadline, potentially further improving schedulability

analysis. We leave analyzing this type of behavior to future

work. We have also only considered a single core in our

schedulability evaluation as our target platform only had one

core. We are not aware of any similar microcontroller that

both has multiple cores and support for the MTB and DWT.

However, having a separate core to process checks in parallel

could offer further benefits to asynchronous CFI.

Experimental design. To evaluate the effects of these over-

head sources on real-time schedulability, we conducted a

schedulability study based on randomly generated task sys-

tems. We used SchedCAT [40] to analyze the response times

of tasks using rate-monotonic scheduling on a single-core

system, which is representative of our hardware platform.

Our experimental design applied commonly used task-system

distributions defined by Brandenburg [41] and also encoded in

SchedCAT. We include a representative subset of these graphs

in Fig. 7.

While we tested all of the standard distributions described

in SchedCAT and [41], here we review only the distributions

used in the graphs in Fig. 7. We used short, medium, and

long periods uniformly distributed in [3, 33] ms, [10, 100] ms,

and [50, 250] ms, respectively. We also considered utilizations

that were light, medium, and heavy, uniformly distributed in

[0.001, 0.1], [0.1, 0.4], and [0.5, 0.9], respectively. For each

combination of periods and utilizations, we generated task

systems with total utilization in [0.1, 0.2, . . . , 1]. We randomly

generated Fi from a uniform distribution with a maximum

of 100 cycles/event and minimum of 5 cycles/event taken

from what we observed from our implementation. We set the

hardware clock speed to 20 MHz.

368

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

We compared the results from Eq. 1, which represents a

system without InsectACIDE to the results from Eq. 2, which

represents InsectACIDE. Within InsectACIDE, we compared

the schedulability of tasks with filtering to the schedulability of

tasks without filtering. We also considered the schedulability

of using software tracing to the other hardware-based options.

Finally, we compared InsectACIDE to SHERLOC [8], which

we see as the most similar related work.

As previously discussed, task sets may generate control-flow

events at different rates. Thus, we define a parameter F that

is set per-task from a uniform distribution in [5, 100] based on

the range we observed in our experimental findings. We use

this F for the no-filtering tests and the SHERLOC tests.

For the filtering tests, we define an “improvement factor”

between Fnofilter and Ffilter. For each task, we pick an improve-

ment factor from a uniform distribution in [1, 596] based on

the range we observed in our experimental findings. We then

divide each task’s Fnofilter by its improvement factor to arrive

at its Ffilter.

We also compare against a software-only instrumentation

(with callsite as context), as described in Sec. VI-A. To

approximate the schedulability of this approach we simply

inflate the execution time by the overhead factor of 0.57 that

we observed in our experimental measurements, since there is

no previous schedulability analysis.

For the rest of the non-normal approaches, we noted through

our experiments that δ differs between the different cases.

Notably, the cost for flushing the MTB differs for the filtering

approach to account for the added overhead of the selective

tracing mechanism, and the cost of checking each entry differs

for SHERLOC. Thus, we define δ = 2.238μs for the no-filter

case, δ = 3.543μs for the filtering case, and δ = 2.032μs for

SHERLOC.

Results. Fig. 7 shows three representative graphs from our

study, from which we make several observations.

For task systems with long periods and heavy utilizations,

the utilization loss to overheads in InsectACIDE is compara-

tively smaller. In our response-time analysis (Eq. 2) there is

carry-in work at the critical instant that exists from events that

are buffered but not yet processed. This has a comparatively

smaller effect when periods are longer, as shown in Fig. 7(a).

Conversely, when periods are much shorter, this overhead is

quite costly, as can be seen in Fig. 7(c). We note that this

behavior is observed for both InsectACIDE and the prior state-

of-the-art, SHERLOC.

Next we consider the effects of selective filtering. In the

implementation of selective filtering there are greater over-

heads, and more of the recorded control-flow events must be

checked (vs. discarded if they are not security relevant – e.g.,

a for loop instead of a function return). Therefore, the per-

event processing time is greater, while the number of events

is reduced. Interestingly, in many of the schedulability graphs

these effects largely counteracted one another and filtering

usually had only a modest benefit, at best.

We also observe that InsectACIDE and SHERLOC, the

TABLE I: Quantitative security evaluation

Task SHERLOC InsectACIDE Difference
Avg Lg Avg Lg Avg Lg

failsafe
check

2.8 4 1.2 2 ↓57% ↓50%

collision
prevent

2 2 1 1 ↓50% ↓50%

flight mode
manage

8.6 12 6.2 12 ↓28% 0

geofence
breach avoid

1.8 5 1.3 3 ↓27% ↓40%

vtol attitude
control

2.3 3 2.2 3 ↓4% 0

Avg/Lg: average/largest equivalence class size.

hardware-based approaches, do not dominate the software-

based approach, or vice versa. However, we note that both

InsectACIDE and SHERLOC have advantages in that they

do not require any binary instrumentation, whereas software-

based approaches do.

Finally, we note that InsectACIDE applies context-sensitive

CFI whereas SHERLOC does not. Therefore, InsectACIDE is

a stronger defense and in many cases the analytical utilization

loss due to additional trace processing cost is quite modest,

with the possibility of even improved performance using our

selective-filtering technique.

C. Security Evaluation

To demonstrate the security benefits of InsectACIDE, both

qualitative and quantitative evaluations are conducted to com-

pare their ability to detect control-flow hijacking attacks. Five

real-time tasks from PX4 [42] (as listed in Table I) are used

in this case study.

Qualitative demonstration of added protection from the
use of application context. To demonstrate the attack, a

buffer-overflow vulnerability is manually injected by replacing

a safe length-checked strncpy function in the Mavlink mod-

ule with an unsafe strcpy function without length checking,

as shown in Listing 1. The manual injection of vulnerability is

a common security evaluation technique for defensive systems,

and was used in [5], [43]. This enables attackers to perform

out-of-bound writes.

We implemented an attack to exploit the over-

approximation in the points-to analysis, which is conducted

on an indirect function call _current_task.task->

activate(last_setpoint) (Line 7). The indirect function

call uses a virtual function pointer of the object in the C++

class FlightTask to call its member function activate,

which is responsible for configuring flight parameters of

the current flight mode. Due to the C++ class inheritance

feature, there are twelve possible targets at the indirect call,

as shown in the SHERLOC-EC box. One of the flight modes

is Failsafe, a critical functionality to guarantee safety in

unexpected situations, and its invocation pattern is shown

from Line 4 to 9. In this case, the attacker’s goal is to divert

the control-flow of the Failsafe process to another one

of twelve targets, such as FlightTaskOrbit::activate,

369

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Results from schedulability study – see Sec. VI-B.

����������	�
���

����	��
������������������
�����������������
�����������������
����

���������������
��

�����
� ��!���	�"���#������$���	"����!���	�"���%�������$�������������
�&�����$���	����$��������������������!���	�"���%����''!�����(�'��
�)����������
����������*�����+�(���	�"���!�����(�,��
�-����������
����������*����./�����������������
�����,��0������������������
�������0�
�������
�1�������!���	�2���2������''��34

�35������%(4�3����
�6����������	
���
�����	
���������

���
���,�0����������7���������������������0�
�����
���������!���	�2���2������''������(���	����������
������������+��$���	"����!���	�"���%����''8�����,�0���������9���������0���

���9���������
3���������*����:�((���7��������
�����*����7������������,
���;��������
3���������*����:�((���7��������
�����*�����,

����	
����
�
������������

���������������
����������� ����������
� ������������

����������������!����������������������"�#����������

$$$����������

Listing 1: Example of attack detection.

to subvert the safety of the system. This attack cannot be

detected by SHERLOC, but InsectACIDE can utilize the

context at Line 9 and check the control-flow transition events

recorded at both Line 7 and 9 together to narrow its EC,

ultimately detecting the attack.

Quantitative analysis. We use EC size as a security metric

to quantify the added security protection. While this is by no

means a complete indication of security, EC size effectively

quantifies the benefits of leveraging the context, since the

fundamental vulnerability behind naive CFI is the ambiguity

of pointer values within the EC. Intuitively, the smaller the size

of the EC, the less room there is for an attacker to adversarially

manipulate by corrupting the pointer value with other values

in the same EC. The largest and average EC size of indirect

branches for each task are measured. To facilitate a comparison

between SHERLOC and InsectACIDE, the difference in the

measured metric, calculated as | InsectACIDE−SHERLOC
SHERLOC

|, is shown

in Table I. InsectACIDE can effectively reduce the EC size by

up to 57% using context.

However, for the task vtol attitude control, where

InsectACIDE performs least effectively, we found that this

is due to the ineffectiveness of using callsite as context,

because the target information of most code pointers cannot

be propagated along the function callsite. This also shows

that context-sensitive CFI depends heavily on the selection of

context type.

VII. SECURITY ANALYSIS

Security of system implementation. An attacker may attempt

to corrupt metadata to change malicious trace data into benign

ones in order to bypass detection. However, InsectACIDE

configures the MTB to be accessible only in TrustZone. Any

attempts to access the trace data from normal mode or normal

world DMA controller will trigger a fault.

The InsectACIDE implementation disables the MTB in

three instances. If an attacker is able to forcibly disable the

MTB they could bypass security checks, so we assess each of

these cases individually. First, when the MTB becomes full,

a DebugMon exception is raised and the buffer is flushed in

the secure mode. During this flushing, the MTB is disabled.

However, before disabling the MTB, InsectACIDE also dis-

ables interrupts, leaving no opportunity for the attacker to

forcibly preempt the flushing and hijack control flow without

detection. The second case is when trace data is processed

during idle time. Although interrupts are enabled in this case,

the interrupts are detectable in secure world, and MTB is re-

enabled before context switches back to normal world. The

third case is when performing selective tracing. In this case,

the MPU is configured to trap any code outside of the selected

untraced code, ensuring that the MTB is re-enabled at the exit

of selective-trace segment.

Security of control-flow protection. An attacker may lever-

age the asynchrony between trace recording and trace checking

to launch an attack, such as skipping the idle task to delay

trace checking, to cause critical consequences before being

detected. However, InsectACIDE ensures that all CF events

are checked prior to interaction with the physical world.

Moreover, attackers may attempt to leverage the selective

tracing mechanism, in which the MTB is disabled, to initiate

malicious control transitions. However, the code segments that

are filtered are carefully selected to not contain any indirect

transfers. As a result, attacks cannot hijack control solely

within the selectively untraced code.

VIII. RELATED WORK

Control-flow protection on embedded system. The com-

parison with related work is shown in Table II. To achieve

binary-preserving properties, existing works utilize either off-

the-shelf hardware [8], [16], [46], [47] or customized hard-

370

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Control-flow Protection on Embedded System

System Arch. No
Inst.

Non
Priv. Priv. Ret.

Addr. Cxt RT
Ada.

RECFISH [27] R � � �
μRAI [5] M � � �\
Silhouette [26] M � �
Kage [25] M � � �
CaRE [21] M � � �
TZmCFI [20] M � � �
SHERLOC [8] M � � � �
ECFI [44] A � � �
FastCFI [45] Cus. � � � � �
Kadar et al. [46] A � �\ �\ �\ �
InsectACIDE M � � � � � �

Arch: architecture, Cus: customized hardware, Inst: instrumentation requirement, Priv:
privileged mode protection, Ret Addr: return address protection, Ctx: context-sensitive
forward-edge checking, RT Ada: real-time adaption, �\: partially support.

ware [45], [48]. This is because hardware support is neces-

sary for monitoring a program whose binary is unmodified.

InsectACIDE can be deployed on commodity hardware. Exist-

ing approaches providing the holistic protection [5], [8], [20],

[21] often rely on modification of the system binary. However,

InsectACIDE transparently ensures the context-sensitive CFI.

Another line of work focuses on the timeliness of program

execution [47], [48] rather than control-flow integrity, or only

checks partial control flow events [46] to accommodate real-

time requirements. Therefore, they do not provide holistic

protection either. Additionally, most of the works, including

SHERLOC [8], do not perform context-sensitive checks for

fine-grained control-flow protection, or offer real-time adap-
tation to optimize performance or provide analysis for real-

time guarantees, with the exception of [25], [27], [44]–[46].

Furthermore, SHERLOC does not address unique challenges

stemming from real-time operating systems, such as the idle

task in FreeRTOS. In comparison to these works, InsectACIDE

is the first to support all the above-mentioned properties using

existing hardware on Arm Cortex-M.

Hardware-assisted tracing. Existing works leverage various

tracing hardware for security protection. On server platforms

such as x86, BTS (Branch Trace Store), LBR (Last Branch

Record) tracing, and Intel Processor Trace (PT) are used for

context/path-sensitive control-flow integrity [6], [7], [11]–[16].

On the Arm Cortex-A and M platforms, both CoreSight Em-

bedded Trace Macrocell (ETM) and MTB have been utilized

to monitor control flows [8], [46]. InsectACIDE also leverages

the hardware to provide traces to provide security protection.

IX. DISCUSSION AND LIMITATIONS

Finer-grained security scheduling policy. The existing im-

plementation of InsectACIDE conducts security checking dur-

ing idle time, and the scheduling of trace processing workloads

for different tasks is considered a unified security task, re-

quiring that all trace validation must be completed before any

physical outputs can occur. One might argue that not all tasks’

traces have to be validated; instead, only trace data of tasks

that generate output needs validation. If this were the case,

we could schedule the trace processing workloads of different

tasks separately to gain real-time benefits. However, an attack

on one task can potentially affect the entire system, as all

tasks and kernels share a single address space. One method

to mitigate this is to use intra-space isolation. It is important

to note that a hijacked process may never schedule the idle

task, in this case, such system anomalies can be detected by

observing unexpected number of traces for processing.

System requirements. InsectACIDE makes use several hard-

ware features, including the debugging (e.g., MTB), the trusted

execution environment (TrustZone), memory access control

(MPU), and therefore may not be directly applicable to low

power platforms that do not provide these hardware features.

Even though it is possible to leverage software realization

(such as software sandboxing) to realize the hardware features,

there will likely be additional performance overhead.

From the performance perspective, the added security pro-

tection from context sensitivity can incur non-trivial perfor-

mance overhead (both computational overhead and memory

overhead). This might also change the system size, weight and

power requirements. On the bright side, it might be possible

to leverage the idle core in modern multi-core processors

to conduct security enforcement without the need to change

system hardware.

X. CONCLUSION

In this paper we have presented InsectACIDE, the first

binary-preserving, asynchronous, context-sensitive, and holis-

tic CFI for embedded and real-time systems. InsectACIDE

provides control-flow protection for both userspace and kernel

processing using Arm TrustZone, and uses hardware de-

bugging features to separate the recording of control-flow

events from the checking for correct control flow. We have

implemented InsectACIDE on an Arm Cortex-M processor

and have presented empirical evaluations of the overheads of

the approach. Our experimental results show that InsectACIDE

incurs less runtime overhead compared to the state-of-the-art

holistic CFI solution, and our real-time schedulability analysis

and evaluations demonstrate the tradeoff between improved

protection with InsectACIDE, and schedulability.

ACKNOWLEDGMENT

We thank the reviewers for their valuable feedback. This

work was partially supported by the NSF (CNS-1916926,

CNS-2038995, CNS-2154930, CNS-2229427, CNS-2141256,

NSF 2237238, CNS-2238635, CPS-2229290), and ARO

(W911NF2010141), Washington University in St. Louis, and

Vanderbilt University.

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in IEEE Symposium on Security and Privacy, 2013.

[2] G. Thomas, “A proactive approach to more secure code,” 2019.
[3] C. Project, “Memory safety,” 2020.
[4] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and Communications Security, 2007.

371

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

[5] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “μRAI:
Securing embedded systems with return address integrity,” in Network
and Distributed Systems Security Symposium, 2020.

[6] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in 26th USENIX Security
Symposium, 2017.

[7] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity,” in Proceedings of ACM SIGSAC Conference on Computer
and Communications Security, 2018.

[8] X. Tan and Z. Zhao, “SHERLOC: Secure and holistic control-flow
violation detection on embedded systems,” in ACM Conference on
Computer and Communications Security, 2023.

[9] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
USENIX Security, 2015.

[10] M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity,” in 28th USENIX Security Symposium,
2019.

[11] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation
of control flow integrity using performance counters,” in IEEE/IFIP
International Conference on Dependable Systems and Networks, 2012.

[12] V. Van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
CFI,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015.

[13] P. Yuan, Q. Zeng, and X. Ding, “Hardware-assisted fine-grained code-
reuse attack detection,” in International Symposium on Research in
Attacks, Intrusions, and Defenses, 2015.

[14] X. Ge, W. Cui, and T. Jaeger, “GRIFFIN: Guarding control flows using
Intel processor trace,” ACM SIGPLAN Notices, 2017.

[15] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent backward-
edge control flow violation detection using Intel processor trace,” in
Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy, 2017.

[16] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Transparent
and efficient CFI enforcement with Intel processor trace,” in IEEE
International Symposium on High performance computer architecture,
2017.

[17] S. Baruah, P. Ekberg, M. Hosseinzadeh, A. Li, B. Ward, and N. Zhang,
“Who’s afraid of butterflies? a close examination of the butterfly attack,”
in 2023 IEEE Real-Time Systems Symposium (RTSS), pp. 53–63, IEEE,
2023.

[18] T. Mishra, T. Chantem, and R. Gerdes, “Survey of control-flow integrity
techniques for embedded and real-time embedded systems,” ACM Trans-
actions on Embedded Computing Systems, 2021.

[19] B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015.

[20] T. Kawada, S. Honda, Y. Matsubara, and H. Takada, “TZmCFI: RTOS-
aware control-flow integrity using trustzone for Armv8-M,” Interna-
tional Journal of Parallel Programming, 2021.

[21] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses, 2017.

[22] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “RT-TEE: Real-time system
availability for cyber-physical systems using Arm TrustZone,” in IEEE
Symposium on Security and Privacy, 2022.

[23] J. Wang, Y. Wang, and N. Zhang, “Secure and timely GPU execution
in cyber-physical systems,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, 2023.

[24] J. Wang, Y. Wang, A. Li, Y. Xiao, R. Zhang, W. Lou, Y. T. Hou, and
N. Zhang, “ARI: Attestation of real-time mission execution integrity,”
in 32nd USENIX Security Symposium, 2023.

[25] Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell,
“Holistic control-flow protection on real-time embedded systems with
Kage,” USENIX Security Symposium, 2022.

[26] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Silhouette:
Efficient protected shadow stacks for embedded systems,” in USENIX
Security, 2020.

[27] R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and
B. C. Ward, “Control-flow integrity for real-time embedded systems,”
in 31st Euromicro Conference on Real-Time Systems, 2019.

[28] Y. Wang, A. Li, J. Wang, S. Baruah, and N. Zhang, “Opportunistic
data flow integrity for real-time cyber-physical systems using worst case
execution time reservation,” in USENIX Security Symposium, 2024.

[29] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security,
2018.

[30] M. A. Elmohr, H. Liao, and C. H. Gebotys, “EM fault injection on ARM
and RISC-V,” in IEEE International Symposium on Quality Electronic
Design, 2020.

[31] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache
side-channel information leakage from the secure world on arm devices,”
Cryptology ePrint Archive, 2016.

[32] A. Li, M. Sudvarg, H. Liu, Z. Yu, C. Gill, and N. Zhang, “Polyrhythm:
Adaptive tuning of a multi-channel attack template for timing interfer-
ence,” in IEEE Real-Time Systems Symposium, 2022.

[33] A. Li, J. Wang, S. Baruah, B. Sinopoli, and N. Zhang, “An empirical
study of performance interference: Timing violation patterns and im-
pacts,” in IEEE Real-Time and Embedded Technology and Applications
Symposium, 2024.

[34] H. Liu, Y. Wu, Z. Yu, Y. Vorobeychik, and N. Zhang, “Slowlidar: In-
creasing the latency of lidar-based detection using adversarial examples,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

[35] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control Jujutsu: On the weaknesses of fine-
grained control flow integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015.

[36] C. Ferdinand and R. Heckmann, “aiT: Worst-case execution time pre-
diction by static program analysis,” in Building the Information Society,
Springer, 2004.

[37] “Arm MPS2+ FPGA prototyping board.” https://www.arm.com/products/
development-tools/development-boards/mps2-plus, 2017.

[38] “AN505: Cortex™-M33 with IoT kit FPGA for MPS2+ Version 2.0.”
https://developer.arm.com/downloads/view/AN505, 2017.

[39] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in 16th International Workshop on Worst-Case Execution
Time Analysis, 2016.

[40] B. Brandenburg, “SchedCAT.” In B. Brandenburg and M. Gül, “Global
scheduling not required: Simple, near-optimal multiprocessor real-time
scheduling with semi-partitioned reservations,” Proceedings of the 37th
IEEE Real-Time Systems Symposium, 2016.

[41] B. B. Brandenburg, Scheduling and locking in multiprocessor real-time
operating systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2011.

[42] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms,” in IEEE International Conference on Robotics and Automation,
2015.

[43] Z. Sun, B. Feng, L. Lu, and S. Jha, “OAT: Attesting operation integrity
of embedded devices,” in IEEE Symposium on Security and Privacy,
2020.

[44] A. Abbasi, T. Holz, E. Zambon, and S. Etalle, “ECFI: Asynchronous
control flow integrity for programmable logic controllers,” in Proceed-
ings of Annual Computer Security Applications Conference, 2017.

[45] L. Feng, J. Huang, J. Hu, and A. Reddy, “FastCFI: Real-time control-
flow integrity using FPGA without code instrumentation,” ACM Trans-
actions on Design Automation of Electronic Systems, 2021.

[46] M. Kadar, G. Fohler, D. Kuzhiyelil, and P. Gorski, “Safety-aware
integration of hardware-assisted program tracing in mixed-criticality
systems for security monitoring,” in IEEE 27th Real-Time and Embedded
Technology and Applications Symposium, 2021.

[47] W. Chen, I. Izhibirdeev, D. Hoornaert, S. Roozkhosh, P. Carpanedo,
S. Sharma, and R. Mancuso, “Low-overhead online assessment of timely
progress as a system commodity,” in 35th Euromicro Conference on
Real-Time Systems, 2023.

[48] D. Lo, M. Ismail, T. Chen, and G. E. Suh, “Slack-aware opportunistic
monitoring for real-time systems,” in IEEE 19th Real-Time and Embed-
ded Technology and Applications Symposium, 2014.

372

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 04,2024 at 22:42:22 UTC from IEEE Xplore. Restrictions apply.

