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Abstract

Decentralized finance has experienced phenomenal growth, revolu-
tionizing the landscape of financial transactions and asset manage-
ment via blockchain. Yet, this swift growth brings with it substantial
challenges, notably the surge in scam tokens, imposing significant
security threats on cryptocurrency investments and trading. Ex-
isting detection methods of scam token, primarily relying on an-
alyzing contract codes or transaction patterns, struggle to catch
increasingly sophisticated tactics employed by scammers. For ex-
ample, contract-based analysis are unable to identify scams lacking
overt malicious code, e.g., most rugpulls, while transaction-based
methods generally lack the foresight to early-detect potential risks.

In this paper, we present TokenScout, the first temporal graph
neural network-based framework for scam token early detection.
TokenScout formulates token transfer data as a dynamic temporal
attributed multigraph and leverages the temporal graph learning
model to learn graph representations. It also builds a graph repre-
sentation refining model based on contrastive learning to learn a
more discriminative representation space for risk identification. We
evaluated TokenScout using a comprehensive dataset of 214,084
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standard ERC20 tokens from 2015 to February 2023. TokenScout
achieves a balanced accuracy of 98.41%. Additionally, from March
to May 2023, deploying TokenScout on Ethereum effectively iden-
tified 706 rugpulls, 174 honeypots, and 90 Ponzi schemes, thereby
alerting to potential risks exceeding $240 million.
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1 Introduction

Decentralized Finance (DeFi) has revolutionized the world of fi-
nance, facilitating open and borderless services on blockchain plat-
forms like Ethereum [10] and Binance [3]. By April 2023, the DeFi
ecosystem had amassed approximately $83.3 billion in locked as-
sets [1]. At the heart of DeFi’s success are tokens equipped with
programmable smart contracts [35, 43], exemplified by USDT [21],
USDC [25], and SHIB [19]. These tokens serve as the foundational
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units of digital assets, empowering a wide range of decentralized
financial services, including trading, lending, and borrowing, while
obviating the need for traditional intermediaries.

In Ethereum, Ethereum Request for Comments 20 (ERC20) is
the predominant standard for Initial Coin Offerings (ICOs), token
sales, and utility tokens across diverse decentralized applications.
Unfortunately, the ERC20 standard is not immune to abuse by
scam and fraudulent tokens, which lure investors with promises of
enticing returns. Once a critical mass of funds is amassed, malicious
actors manipulate the market or withdraw liquidity, rendering the
tokens valueless and inflicting financial losses upon unsuspecting
investors [8, 18, 28, 29, 31, 33, 37, 50, 63, 67]. In 2022, over 117k
scam tokens resulted in financial losses amounting to billions of US
dollars [14].

In light of the substantial harm inflicted by scam tokens, contract-
based and transaction-based solutions were proposed for their de-
tection. Contract-based methods involve the analysis of token con-
tract code to uncover malicious patterns or functionalities that may
indicate a scam [30, 32, 40, 47–49, 60, 76, 78]. They utilize static and
dynamic program analysis to detect malicious code patterns that
frequently appeared in scam tokens. While effective for detecting
Ponzi tokens, which exhibit malicious patterns of redistributing new
investors’ funds to earlier participants, these solutions fall short
in identifying other prevalent scam tokens. For instance, rugpull
tokens, constituting a significant portion of scam tokens, usually
appear benign in their code but engage in malicious transactional
activities [27, 69].

On the contrary, transaction-based methods typically leverage
deep learning approaches to scrutinize the transactional character-
istics of tokens [50, 67]. These methods concentrate on statistical
features from token transactions, encompassing transfer rates, vol-
ume, and sentiment. Nevertheless, they fall short in capturing the
intricate and evolving behavioral dynamics of token transaction
flow. For example, these methods overlook the timing of transac-
tions by scammers, fail to detect coordinated manipulative activities
using multiple addresses, or miss recurrent patterns that indicate
preparatory scam activities. Therefore, they can only flag already-
occurred scam tokens, lacking the foresight to proactively predict
upcoming threats and safeguard potential investor losses.

In this paper, we advance transaction-based solutions to enhance
the real-time risk monitoring and early detection of scam tokens by
introducing a novel Graph Neural Network (GNN) based approach.
While it seems natural to apply GNNs to token transfer graphs,
there are some unique challenges: (1) representation learning in to-
ken transfer graph. Applying GNN to token transfer graphs involves
the challenge of robustly learning from extensive node and edge
attributes and token transfer activities. The main difficulty is in
encoding the attributes of nodes and edges into GNN models to
effectively capture the complexities of token transfers; (2) encod-
ing temporal dynamics of token transfer graphs. It is challenging
to encode the temporal dynamics of token transfer graph using
GNNs. The inherent structure of most GNNs and their variants
typically conceptualizes the graph as static, or at best, operates on
fixed-timeframe graph snapshots, assuming uniform time intervals
between events [51, 75]. However, token transfer activities occur
sporadically and unpredictably, making it difficult to adapt these

models. Furthermore, it is difficult to capture long-term dependen-
cies in rapidly evolving and irregular token flow [51].

Additionally, identifying scam tokens before fraud occurs is chal-
lenging because it involves detecting subtle signs within token
transactions that could indicate a scam is imminent. These early
warning signals are often hidden among numerous legitimate trans-
actions, making it hard to spot them in advance. A thorough and
precise analysis of transaction patterns is required to effectively
identify these indicators and prevent scams before they happen.

To address these challenges, we present TokenScout, the first
temporal GNN-based framework to monitor real-time token trans-
actional behaviors for the early detection of scam tokens. To enrich
node and edge attributes for graph learning, we analyze centrality
of node and edge, and their related transfer behavior. We formulate
token transfer activities as a novel Dynamic Temporal Attributed
Multigraph (DTAM), in which nodes and edges having rich at-
tributes. DTAM is capable of continuous evolution and allows for
multiple edges between any pair of nodes.

To learn the robust temporal representation for the token trans-
fer activities on DTAM, we devise a novel Token-Flow Graph Neu-
ral Network (TF-GNN), which is a GNN. TF-GNN incorporates
a temporal encoder to encode timestamps as temporal semantic
representations, next aggregates these with edge and node repre-
sentations strategically, then learns the representation of overall
token transfer graph by aggregating the representations of token
creator, investors, and all transfer events. Through this, TF-GNN
adeptly captures the dynamic and structural characteristics of token
transactions.

To early-detect scam tokens, TokenScout employs contrastive
learning-based refining that distinguishes between similar and dis-
similar token transaction patterns, effectively capturing behaviors
specific to scam tokens. Specifically, it clusters instances with sim-
ilar scam behaviors closer together in the embedded space and
separates those with distinct patterns. It ensures that subtle early-
stage scam discrepancies are effectively identified. The enhanced
graph representation is analyzed by a detection model to identify
potential risks and classify the type of scam. With real-time moni-
toring of token transfer behaviors, TokenScout can deliver prompt
scam alerts.

To evaluate TokenScout, we compiled a new large-scale token
transfer dataset from 214,084 standard ERC20 marketplace tokens
on Ethereum, spanning from the first token in 2015 to February 2023.
This dataset contains 9,711,502 token transfer events. The token
labeling involved four experienced token risk auditors, costing
over 800 man-hours for labeling of benign tokens and scam token,
including rugpull, honeypot, and Ponzi tokens. The evaluation
results show that TokenScout achieves a precision of 98.03%, recall
of 97.47%, F1 score of 97.75%, and balanced accuracy (BAC) of
98.41% in early-detecting scam tokens. In identifying token types,
TokenScout achieves a precision of 95.71%, a recall of 94.90%, an
F1 score of 94.85%, and a BAC of 94.90%.

We also deployed TokenScout on Ethereum from March 1 to
May 31, 2023. It exhibited a low False Negative Rate (FNR) of 3.55%,
4.92%, and 0 in detecting rugpull, honeypot, and Ponzi tokens, re-
spectively. Over this period, TokenScout is estimated to have
alerted financial losses amounting to $245.01 million. Furthermore,
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we conducted the evasion study by evaluating TokenScout’s re-
silience against adversarial manipulations. Even under combination
of three manipulations, TokenScout demonstrates robust perfor-
mance, with an FNR of 2.95%, 3.83%, and 4.13% for rugpull, honeypot,
and Ponzi tokens, respectively. We also performed interpretabil-
ity analysis to better understand TokenScout’s decisions in risk
assessments.

The contributions of this paper are summarized as follows:
• We propose TokenScout, the first temporal graph learning-
based framework for monitoring the real-time token trans-
actional behavior to predict the future risk of ERC20 tokens;
• We introduce DTAM to formulate intricate token transfer
activities and devise effective temporal graph learning strate-
gies on DTAM;
• We compiled a large dataset for scam token detection, consist-
ing of over 9 million token transfer events for all historical
tokens as of February 2023 on Ethereum, and the token risk
labels built on over 800 man-hours. To aid future research
in the community, we open-source the raw and processed
datasets at bit.ly/erc20-token-transfers;
• We comprehensively evaluated TokenScout on our labeled
dataset across diverse settings. The results demonstrate its
effectiveness in early-detecting scam tokens, outperforming
existing methods and baseline graph models. We also evalu-
ated TokenScout on real world Ethereum transactions and
performed evasion study.

2 Background

In this section, we brief the background of Ethereum tokens and
scam tokens.

2.1 Ethereum Tokens

Ethereum facilitates smart contract execution and houses two ac-
count types: Externally-Owned Accounts (EOAs) for user-driven in-
teractions using public-private key pairs, and Contract-Owned Ac-
counts (COAs) that automate operations based on embedded code.
ERC20 specifies six essential functions interfaces and two events,
facilitating token transfers and ensuring transparency through a
public ledger [73]. This allows tokens to be easily exchanged and
transferred via the execution of specific functions (e.g., transfer).
Token transfer on Ethereum can be launched by EOA or COA,
require gas fee to process, serving as a spam preventation and a
resource allocation mechanism [46, 54, 79].

To enable the exchange of tokens among various accounts, De-
centralized Exchanges (DEXs), e.g., Uniswap [24] and SushiSwap [20],
play a crucial role. They operate using liquidity pools, which are
essentially reserves of token pairs that enable trading. Liquidity
Providers (LPs) are accounts that deposit specific pairs of tokens
into these pools to ensure there is enough of each token available
for trading. For example, an LP could deposit a combination of
widely-recognized tokens (e.g., WETH), and a newly-issued market-
place token (e.g., Dogecoin), into a liquidity pool. In return for
their contribution of helping maintain the exchange’s liquidity, LPs
receive LP tokens from DEXs. On the contrary, unlike LP tokens
tied to specific liquidity pools, marketplace tokens represent in-
vestments and governance rights, making them broadly traded and

highly susceptible to scams. The open nature of DeFi, coupled with
its minimal regulatory oversight, exposes these marketplace tokens
to fraudulent schemes like rugpulls, where their value is artificially
inflated for exploitation to deceive investors [44, 53].

Note that token creators, LPs, and/or investors can engage in
malicious scam activities. For example, token creators may arti-
ficially manipulate market supply by burning tokens, while LPs
might suddenly remove their stakes from liquidity pools, destabiliz-
ing token values. Investors, on their part, may engage in deceptive
practices like wash trading, creating false market activity by buying
and selling the same tokens, or initiating pump-and-dump schemes
to inflate token prices before selling for a profit. These manipula-
tive strategies not only threaten the DeFi marketplace’s fairness
but also expose unsuspecting participants to significant risks. The
scam has grown with the popularity of ICOs as a means of raising
funds, heightening the potential for scams, particularly among DeFi
newcomers [7, 15, 18, 50]. Thus, our research aims to develop effec-
tive methods to identify the potential risks of ERC20 marketplace
tokens, ensuring the integrity and security of the DeFi market.

2.2 Scam Tokens

Scam tokens, stemming from fraudulent activities, are broadly clas-
sified into three categories: rugpull, honeypot, and Ponzi tokens.

Rugpull tokens entice investors with the allure of a promising
project, only for the initiators to suddenly abandon the endeavor
and abscond with the invested funds, typically before investors
can liquidate their holdings [18, 27, 29]. These tokens often employ
deceptive strategies such as misleading tokenomics, strategic liq-
uidity withdrawals, concealed ownership, and price manipulation.
As depicted in Figure 1(a), a typical rugpull involves the perpetrator
establishing a token, marketing it, and providing liquidity on a DEX.
Furthermore, they might mimic the names of popular or emerging
legitimate tokens to further lure unsuspecting investors. At the
trading volume’s apex, the liquidity is abruptly removed by the
fraudster, rendering the tokens worthless for investors.

Honeypot tokens exploit potential investors by manipulating
smart contracts to enforce restrictive selling conditions. They entice
investors with appealing offers but, post-acquisition, restrict trad-
ing, making the tokens essentially illiquid, as depicted in Figure 1(b).
Unlike traditional honeypot scams [61], which are evident from
coding flaws and attract funds to a deceptive contract, honeypot
tokens subtly introduce conditions such as high selling taxes or
limits. They often involve liquidity pool manipulations, external
contracts, or blacklists/whitelists. For instance, it might whitelist
only select investors, allowing only them to sell the token.

Ponzi tokens operate by using new investors’ funds to pay re-
turns to earlier participants, giving an illusion of legitimacy and en-
ticing further investments, as depicted in Figure 1(c). Such schemes
have become notable gas consumers on the Ethereum [9]. As the
influx of new investments wanes and the investor pool expands,
the scheme becomes unsustainable and collapses, resulting in sig-
nificant losses for later entrants. To prolong the scheme’s viability,
scammers might modify contracts or impose selling fees, eventu-
ally depleting liquidity or misappropriating investors’ assets. These
tokens, which often last longer than expected, congest the network
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Figure 1: Illustration of rugpull, honeypot, and Ponzi token
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Figure 2: Workflow of TokenScout

and tarnish the industry’s reputation. Telltale signs include transac-
tions concentrated among few addresses, incrementally increasing
transaction values, and a centralized distribution with a majority
of tokens retained by a limited set of addresses.

It is crucial to recognize that these categories are not mutually
exclusive; fraudsters can integrate multiple scam strategies within
a single token. For instance, a Ponzi token might initially reward
early investors using fresh investments, but finally the scammer sud-
denly draining all remaining funds, mirroring rugpull tactics [64].
Driven by the critical influence of token creators, LP providers, in-
experienced investors, and the presence of abnormal token transfer
behaviors like wash trading and pump-and-dump schemes, we aim
to design temporal GNN-based method to meticulously characterize
these aspects and the early-detect scam tokens.

3 TokenScout

In this section, we present the overview of TokenScout and detail
how it works.

3.1 System Overview

Figure 2 illustrates the workflow of TokenScout, consisting of four
stages, namely, DTAM building, representation learning, represen-
tation refining, and scam token detection. In this DTAM building
stage, TokenScout constructs its token transfer activities into a
DTAM for each token. It operates via preprocessing transaction
data and extracting features for the nodes and edges. Representa-
tion learning is designed on a novel temporal graph learning model,
Token Flow GNN (TF-GNN), to learn a comprehensive and robust
graph representation for each token’s token transfer graph. To
represent global and local graph structural and temporal character-
istics of the graph, it encodes temporal dynamics using a learnable
function, and aggregates this temporal representation with the fea-
tures of neighboring nodes and edges. TF-GNN allows to learn
the comprehensive structural characteristics and temporal patterns
of DTAM, providing a comprehensive understanding of the token
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Figure 3: Example of token 0x55b..7855’s (a,b) and token

0x225..d1e1’s (c, d) raw value and processed value

flow and highlighting potential anomalies indicative of scam activi-
ties. To represent the transaction behavior characteristics of scam
tokens, representation refining, serving as the decoder, employs
a supervised contrastive learning-based model to refine the rep-
resentations from TF-GNN. It is trained by incorporating token
labels and learned graph representations. Scam token detection is
a classification model trained using the refined representations and
token labels, predicting the risk of potential scam tokens and token
types. This process integrates encoding, refining, and predictive
analytics into a coherent workflow for scam tokens identification
and classification.

3.2 DTAM Building

To capture the temporal dynamics of the transfer activities of an
ERC20 token, we introduce a novel Dynamic Temporal Attributed
Multigraph (DTAM), denoted as 𝐺 = (𝑉 , 𝐸,𝑿𝑉 ,𝑿𝐸 ), for modeling
these activities. 𝑉 is the set of nodes, consisting of Ethereum ac-
count addresses, including both EOA and COA, involved in token
transfers. 𝐸 consists of the set of edges, where each edge 𝑒 = (𝑢, 𝑣, 𝑡)
represents a token transfer from account 𝑢 to 𝑣 , annotated with the
timestamp 𝑡 . Given that two nodes can be connected by multiple
edges, each distinguished by unique timestamps, 𝐺 is thereby a
temporal attributed multigraph. Furthermore, attributes are asso-
ciated with each node and edge. Specifically, each node 𝑣 ∈ 𝑉 is
represented by a feature vector 𝒙𝑣 ∈ 𝑿𝑉 . Similarly, each edge 𝑒 is
described by a feature vector 𝒙𝑒 ∈ 𝑿𝐸 . To construct theDTAM from
a token’s transfer activities, it encompasses the following steps.

Transaction data preprocessing. Tokens can exhibit varying
denominations due to different decimal places, often spanning sev-
eral orders of magnitude, with a few extremely high values. To
prepare the token transfer values for effective representation learn-
ing in GNNmodels, the data undergoes two critical transformations.
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The first transformation, unit standardization, adjusts the scale of
token values to a standardized unit by applying 𝑣𝑙 ′𝑒 = 𝑣𝑙𝑒/10dec,
where 𝑣𝑙 ′𝑒 and 𝑣𝑙𝑒 explicitly denote the standardized and original
values of edges 𝑒 . dec represents the number of decimal places in the
token’s smallest unit. It ensures that the values across different to-
kens are comparable by normalizing them to a common scale, thus
avoiding distortions caused by tokens with vastly different value
magnitudes. Figure 3 depicts the raw value and processed value
of two tokens for better understanding. To address the skewed
distribution typically observed with token values, log-scaling is
applied, normalizing the distribution and reducing the impact of
extreme outliers. Following log-scaling, standard normalization is
employed to adjust the distribution further, setting its mean to zero
and standard deviation to one. This results in a distribution that
is more Gaussian-like, which is beneficial for model training as it
enhances learning efficiency and model performance by providing
a standardized input feature set, thus facilitating the model’s ability
to learn general patterns across different tokens [56].

Timestamp normalization. Transaction data inherently carry cru-
cial temporal information that is essential for understanding trans-
action behaviors. To effectively utilize this information, each edge
𝑒 in the graph is assigned a normalized timestamp 𝑡 ′𝑒 calculated
as: 𝑡 ′𝑒 = 𝑡𝑒 − 𝑡start, where 𝑡𝑒 represents the actual timestamp of the
transaction corresponding to edge 𝑒 , and 𝑡start is the timestamp of
the first token transfer event in the dataset. This aligns all trans-
actions relative to the start of the data capture, emphasizing their
chronological sequence and aiding in the identification of temporal
patterns indicative of anomalous behaviors.

The intuition behind normalizing timestamps is to enhance the
model’s ability to analyze temporal token transfer activities by
ensuring uniform transaction intervals. This approach reduces
noise from external factors and mitigates variability from unrelated
off-chain events. Additionally, it helps temporal encoders capture
temporal relationships and dependencies, reflecting irregularities
caused by off-chain events in a controlled manner. Normalizing
timestamps also provides a consistent basis for comparison across
different time periods and tokens, aiding in the model’s generaliza-
tion. While off-chain events matter, our model focuses on detecting
scam behaviors rooted in on-chain activities, such as token transfer
traits, token creator behavior, and investor behavior. This ensures
that detection is not compromised by external temporal variability,
allowing the model to maintain its focus on the essential on-chain
data for more accurate identification of scam behaviors.

Node feature extraction. In the original token transfer graph,
nodes have no inherent features. To build DTAM and better un-
derstand the roles and behaviors of nodes, we compile the node’s
features from two perspectives, including node importance and
its transfer behavior, as presented in Table 1. The intuition is that
scammers exhibit anomalous transactional behavior to deceive the
investors, and these nodes have high node importance. By capturing
node importance and token transferring behavioral characteristics
from various perspectives in the graph, we can create accurate and
informative node features of the underlying dynamics and relation-
ships. For example, a higher importance score may indicate active
investor and token owner participating in token transfer events.

TokenScout extracts node centrality and its transfer frequency
to represent the node importance and its transfer behavior. The
extracted centrality features include degree centrality, indegree
centrality, outdegree centrality, betweenness centrality, closeness
centrality, eigenvector centrality, Katz centrality, and clustering
coefficient. Besides, it analyzes the behavioral characteristics by ex-
tracting the incoming and outgoing transfer frequency in long-term
and short-term windows respectively. The features offer insights
into structural and dynamic interactions of token transfers, playing
a pivotal role in early scam detection. For example, a small node
degree centrality could hint at scam attempts. Similarly, frequent
transfers in transfer patterns might indicate fraud. Katz centrality
unveils abnormal network structures common in scams, while a
high clustering coefficient might reveal closely coordinated scam
activities.

Edge feature extraction. Edges in the token transfer graph
have only the transfer value and timestamp. The intuition is that
leveraging the features of neighboring nodes and edges enriches
the edge attributes, enabling a more comprehensive analysis of
the token transfers. As outlined in Table 1, TokenScout compiles
the edge features encompassing transfer value, harmonic transfer
value, accumulated degrees of incoming and outgoing transfers. To
encapsulate the dynamics of transfer behavior, it also analyzes ac-
cumulated token transfer frequency over long-term and short-term
windows for each edge, which captures the frequency and patterns
of token transfers. These edge features illustrate relationships be-
tween nodes, behavioral characteristics of token movements, and
ongoing activities, offering a comprehensive insight into token
transfer dynamics for risk detection.

For instance, an unusual high transfer value might indicate a
potential scam, a common tactic involving asset movement anom-
alies. Similarly, irregular patterns in accumulated transfer degrees
or frequencies could signify orchestrated, abnormal token trans-
fer behaviors associated with fraud. The harmonic transfer value,
emphasizing smaller transactions, aids in spotting networks where
multiple small transactions camouflage scam activities. Finally, for
each token, the transfers are constructed into a DTAM, where
each node and edge are represented with 16 and 14-dimensional
attributes, respectively.

3.3 Representation Learning

Although, existing GNNs or their variants, e.g., GCN [42] Graph-
SAGE [38], EvolveGCN [51], and TGAT [68], achieved great suc-
cesses in various graph-related tasks, e.g., node classification, clus-
tering, and link prediction, they operates on static graph, or fixed-
timeframe graph snapshots, assuming uniform time intervals be-
tween events [59, 71, 72]. To our knowledge, there are none research
tackling the challenge of learning graph representation from the
complex and fast-paced movements of token transfers in a DTAM.
We devise TF-GNN, an effective graph representation learning ap-
proach for token transfers.

TF-GNN-based graph learning. Temporal encoding. To encode
the temporal dynamics in DTAM, we employ a learnable temporal
encoder network inspired by TGAT [68] for encoding the temporal
information as a representation vector. The key idea is to map
interval from the token-level first transfer event to temporal feature
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Table 1: Extracted edge and node features in building DTAM

Type (#) Feature Description

Node (16)

Degree centrality Proportion of edges attached to the node relative to total number of other nodes
Indegree centrality Proportion of incoming edges attached to the node relative to total number of other nodes
Outdegree centrality Proportion of outgoing edges attached to the node relative to total number of other nodes
Betweenness centrality Degree to which of a node acting as a bridge or gateway in a graph
Closeness centrality Proximity of a node to all other nodes in a graph
Eigenvector centrality Importance of a node by considering the quality of edges
Katz centrality Importance of a node by considering direct and indirect connections
Clustering coefficient Local density of the graph around the node
Long-term incoming transfer frequency Average transfer value and number of incoming transfers to a node within a long-term window
Short-term incoming transfer frequency Average transfer value and number of incoming transfers to a node within a short-term window
Long-term outgoing transfer frequency Average transfer value and number of outgoing transfers from a node within a long-term window
Short-term outgoing transfer frequency Average transfer value and number of outgoing transfers from a node within a short-term window

Edge (14)

Transfer value Normalized log-scaled transfer value
Harmonic transfer value Harmonic mean of the nodes’ degree centrality modulated by the transfer value
Accumulated incoming transfer degree Total transfer value and number of incoming transfers to the same destination before the edge’s timestamp
Accumulated outgoing transfer degree Total transfer value and number of outgoing transfers from the same source before the edge’s timestamp
Long-term accumulated incoming transfer frequency Average transfer value and number of an edge’s accumulated indegree within a long-term window
Short-term accumulated incoming transfer frequency Average transfer value and number of an edge’s accumulated indegree within a short-term window
Long-term accumulated outgoing transfer frequency Average transfer value and number of an edge’s accumulated outdegree within a long-term window
Short-term accumulated outgoing transfer frequency Average transfer value and number of an edge’s accumulated outdegree within a short-term window

vectors using a generalizable and learnable time encoder, i.e., Φ :
𝑡 → R2𝑑 . The temporal encoding function is formulated as Eq. 1.

Φ(𝑡) = 1
√
𝑑
[cos (𝜔1𝑡) , sin (𝜔1𝑡) ... cos (𝜔𝑑𝑡) , sin (𝜔𝑑𝑡)] (1)

where 𝜔1 ...𝜔𝑑 represent learnable weights of the temporal encoder.
The time encoding function can generate temporal representation
to capture token transfer dependencies, better our understanding
of temporal relationships in DTAM.

Node representation learning. In traditional GNNs, learning node
representations involves two fundamental steps: aggregating the
representation of a node and its neighboring nodes, and then, prop-
agating these to their neighbors. The intuition is to capture node
representations by combining the historical and current embed-
dings of neighboring nodes, while also integrating the temporal
information. In DTAM, TF-GNN operates through three additional
steps: N❶ Each edge’s interval from the token’s first transfer event
is encoded into a temporal embedding. N❷ The embeddings of
neighboring nodes are aggregated, integrating the corresponding
temporal embeddings and considering the characteristics of the
connecting edge, formulated as Eq. 2.

𝑧𝑙
𝑁 (𝑣) ← 𝐴𝑔𝑔(𝑧𝑙−1𝑢 | |Φ(𝑡𝑣 − 𝑡𝑢 ),∀𝑢 ∈ 𝑁 (𝑣)) (2)

where 𝐴𝑔𝑔 is the aggregation operator. | | is the concatenation op-
erator. 𝑁 (𝑣) is the neighboring nodes of node 𝑣 . 𝑧𝑙−1𝑢 is the repre-
sentation of node 𝑢 at graph layer 𝑙 − 1. N❸ The updated node’s
embedding is then aggregated and propagated to its neighboring
nodes, with the connecting edge and temporal embedding being
factored into the propagation process, formulated as Eq. 3.

𝑧𝑙𝑣 ← 𝜎 (𝑾𝑙
𝑉 · (𝑧

𝑙−1
𝑣 | |𝑧𝑙𝑁 (𝑣) )) (3)

where𝑾𝑉 is the learnable weigh matrix in updating node embed-
ding. 𝜎 is the activation function.

Edge representation learning. We devise the following strategies
for learning edge representation: E❶ it aggregates representations

of incoming and outgoing neighboring edges, formulated as Eq. 4.

𝑓 𝑙
𝐼𝑁 (𝑒 ) ← 𝐴𝑔𝑔(𝑓 𝑙−1𝑒 | |Φ(𝑡𝑒 − 𝑡𝑖𝑒 ),∀𝑖𝑒 ∈ 𝐼𝑁 (𝑒))

𝑓 𝑙
𝑂𝑁 (𝑒 ) ← 𝐴𝑔𝑔(𝑓 𝑙−1𝑒 | |Φ(𝑡𝑒 − 𝑡𝑜𝑒 ),∀𝑜𝑒 ∈ 𝑂𝑁 (𝑒)) (4)

where 𝐼𝑁 (𝑒) is the incoming transfer to the same destination node
of 𝑒 before the timestamp of the current edge.𝑂𝑁 (𝑒) is the outgoing
transfer to the same source node of 𝑒 before the timestamp of the
current edge. 𝑓 𝑙−1𝑒 is the embedding of edge 𝑒 at graph layer 𝑙 − 1.
The behind idea stems from our observations that token transfers
to the same node (incoming) or from the same node (outgoing)
might have similar objectives or intentions, such as facilitating a
scam. E❷ It also incorporates the representations of the two nodes
connected by an edge, formulated as Eq. 5.

𝑓 𝑙𝑢𝑣 ← 𝑆𝑢𝑚(𝑧𝑙𝑢 , 𝑧𝑙𝑣) (5)

The intuition is that the attributes of connected nodes provide
critical structural information, enriching the edge representations
by considering both node and edge relationships. E❸ Lastly, edge
representations are aggregated and propagated across multiple
layers in DTAM to iteratively refine them, enhancing the model’s
ability to expressively capture the graph’s structure and temporal
dynamics, formulated as Eq. 6.

𝑓 𝑙𝑒 ← 𝜎 (𝑾𝑙
𝐸 · (𝑓

𝑙−1
𝑒 | |𝑓 𝑙

𝐼𝑁 (𝑒 ) | |𝑓
𝑙
𝑂𝑁 (𝑒 ) | |𝑓

𝑙
𝑢𝑣 | |Φ(𝑡𝑖 ))) (6)

where𝑾𝐸 is the learnable weigh matrix in updating edge embed-
ding. 𝜎 is the activation function.

Graph representation learning. TF-GNN is designed to learn the
holistic representation of DTAM, consisting of three strategies.G❶

It aggregates updated node and edge representations in the graph.
The intuition is to collectively analyze the interactions and rela-
tionships among nodes and edges, which can help unveil patterns
indicative of scam activities.G❷ It aggregates and propagates graph
representations, merging the updated node and edge representa-
tions with the previous graph representation. This helps capture
higher-order interactions, reflecting both the local and global con-
text, thereby enriching the representations. G❸ It aggregates the
representations of the token creator and token investor respectively,

961



TokenScout: Early Detection of Ethereum Scam Tokens via Temporal Graph Learning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 1 Representation Learning of TF-GNN on DTAM

Input: DTAM𝐺 = (𝑉 , 𝐸,𝑿𝑣,𝑿𝑒 ), # layers 𝐿, node and edge weight
matrix𝑾𝑣 and𝑾𝑒 , temporal encoder Φ, activation function 𝜎

Output: Graph representations ℎ𝑔
1: 𝑧0𝑣 ← 𝑿𝑣,∀𝑣 ∈ 𝑉 ; 𝑓 0𝑒 ← 𝑿𝑒 ,∀𝑒 ∈ 𝐸 ; ℎ0𝑔 ← 0
2: for 𝑙 = 1 to 𝐿 do

3: for 𝑣 ∈ 𝑉 do

4: 𝑧𝑙
𝑁 (𝑣) ← 𝐴𝑔𝑔(𝑧𝑙−1𝑢 | |Φ(𝑡𝑣 − 𝑡𝑢 ),∀𝑢 ∈ 𝑁 (𝑣)) # N❶❷

5: 𝑧𝑙𝑣 ← 𝜎 (𝑾𝑙
𝑉
· (𝑧𝑙−1𝑣 | |𝑧𝑙𝑁 (𝑣) )) # N❸

6: end for

7: for 𝑒 (𝑢, 𝑣, 𝑡𝑒 ) ∈ 𝐸 do

8: 𝑓 𝑙
𝐼𝑁 (𝑒 ) ← 𝐴𝑔𝑔(𝑓 𝑙−1𝑒 | |Φ(𝑡𝑒 − 𝑡𝑖𝑒 ),∀𝑖𝑒 ∈ 𝐼𝑁 (𝑒)) # E❶

9: 𝑓 𝑙
𝑂𝑁 (𝑒 ) ← 𝐴𝑔𝑔 (𝑓 𝑙−1𝑒 | |Φ(𝑡𝑒 − 𝑡𝑜𝑒 ), ∀𝑜𝑒 ∈ 𝑂𝑁 (𝑒 ) ) # E❶

10: 𝑓 𝑙𝑢𝑣 ← 𝑆𝑢𝑚 (𝑧𝑙𝑢 , 𝑧𝑙𝑣 ) # E❷

11: 𝑓 𝑙𝑒 ← 𝜎 (𝑾𝑙
𝐸
· (𝑓 𝑙−1𝑒 | | 𝑓 𝑙

𝐼𝑁 (𝑒 ) | | 𝑓
𝑙
𝑂𝑁 (𝑒 ) | | 𝑓

𝑙
𝑢𝑣 | |Φ(𝑡𝑖 ) ) ) # E❸

12: end for

13: ℎ𝑙𝑣 ← 𝐴𝑔𝑔 (𝑧𝑙𝑣, ∀𝑣 ∈ 𝑉 ) # G❶

14: ℎ𝑙𝑒 ← 𝐴𝑔𝑔 (𝑓 𝑙𝑒 , ∀𝑒 ∈ 𝐸 )# G❶

15: ℎ𝑙𝑔 ← 𝑆𝑢𝑚 (ℎ𝑙−1𝑔 , ℎ𝑙𝑣, ℎ
𝑙
𝑒 )/( |𝑉 | + |𝐸 | ) # G❷

16: end for

17: 𝑡𝑐, 𝑡𝑖 ← 𝑠𝑝𝑙𝑖𝑡_𝑐𝑒𝑎𝑡𝑜𝑟_𝑖𝑛𝑣𝑒𝑟𝑠𝑡𝑜𝑟 (𝑉 )
18: ℎ𝑡𝑐 ← 𝐴𝑔𝑔 (𝑧𝐿𝑣 , ∀𝑣 ∈ 𝑡𝑐 ) ; ℎ𝑡𝑖 ← 𝐴𝑔𝑔 (𝑧𝐿𝑣 , ∀𝑣 ∈ 𝑡𝑖 )
19: ℎ𝑔 ← [ℎ𝐿𝑔 | |ℎ𝑡𝑖 | |ℎ𝑡𝑐 ] # G❸

20: return ℎ𝑔

then merge these with the graph representation to form the final
token representation. The intuition to fuse different perspectives,
i.e., the creator’s intent, the investor’s behavior, and the overall to-
ken transaction patterns, into a unified representation, illustrating
the token’s diverse roles and interactions.

Algorithm 1 outlines the graph representation learning process
of TF-GNN. It operates on a DTAM 𝐺 , and with the inputs of node
and edge weight matrix𝑊𝑣 and𝑊𝑒 , the number of GNN layers 𝐿,
an activation function 𝜎 , and a temporal encoder Φ to incorporate
time information. Initially, each node 𝑣 and edge 𝑒 are assigned
representations based on the extracted features, and the graph rep-
resentation is initialized to zero. 𝑧0𝑣 , 𝑓 0𝑒 , and ℎ0𝑔 are representations
of nodes, edges, and graph at the initial graph layer, respectively. In
each of the 𝐿 layers, TF-GNN proceeds through three steps: learn-
ing node representations in the first inner loop (Line 3-6), learning
edge representations in the second inner loop (Line 7-12), and fi-
nally, updating the graph representation (Line 13-15). In the first
inner loop, each node’s representation 𝑧𝑙𝑣 is updated by aggregat-
ing its neighbors’ representations considering time difference and
its previous layer representation. In the second loop, TF-GNN ag-
gregates incoming and outgoing edge representations, combines
connected nodes’ representations, and updates edge representa-
tion. At each layer’s end, the graph representation is updated by
aggregating (Line 13, 14) and averaging the node and edge repre-
sentations (Line 15). After all layers are processed, The nodes are
split into in creators and investors based on the number of token
transfer events (Line 16), and the representation of creators and
investors are aggregated respectively (Line 17). Finally, the last
layer’s token graph representation 𝑓𝑡𝑔 is fused with representations
of token creator 𝑓𝑡𝑐 and token investor 𝑓𝑡𝑖 representations to form

the graph representation ℎ𝑔 (Line 19). After graph learning, the
output of graph learning model is then used for refining. The output
is a 192-dimensional representation vector, where 𝑓𝑡𝑔 , 𝑓𝑡𝑖 , and 𝑓𝑡𝑐
are with 64-dimensional.

3.4 Representation Refining

To enhance the model’s generalization ability in the open-world
ERC20 token risk monitoring, we also design the representation
refining to yield the semantically more representative features
for token transfer behaviors. Our key idea is to learn an encoder
mapping the extracted graph feature representations into a lower-
dimensional latent space, which robustly and effectively express
the token transfer behavioral characteristics and its token risks.

To fulfill the goal, we design representation refining based on
contrastive learning (CL). It works by minimizing the distance
between representations of instances within the same class while
maximizing distance between instances from different classes. It
incorporates the token labels and minimize the contrastive loss to
learn the robust encoder. To train such model on the imbalanced
dataset, we use the asymmetric contrastive loss, formulated as Eq. 7.

min−
𝑁∑︁
𝑖=1
(
∑︁
𝑗∈𝑃𝑖

log(𝑝𝑖 𝑗 )/|𝑃𝑖 | + 𝜂
∑︁
𝑗∈𝑁𝑖

log(1 − 𝑝𝑖 𝑗 )/|𝑁𝑖 |) (7)

where 𝑝𝑖 𝑗 =
exp(𝒛𝑖 ·𝒛 𝑗 /𝜏 )∑

𝑗 ∈𝑃𝑖∪𝑁𝑖
exp(𝒛𝑖 ·𝒛 𝑗 /𝜏 ) .𝑁 is the total number of instances

in a batch. 𝒛𝑖 is the refined representation of instance 𝑖 in the lower-
dimensional space. The positive set, 𝑃𝑖 = {𝑥 𝑗 : 𝑦 𝑗 = 𝑦𝑖 , 𝑗 ≠ 𝑖},
includes all instances that share the same label as 𝒛𝑖 . The negative
set, 𝑁𝑖 = {𝑥 𝑗 : 𝑦 𝑗 ≠ 𝑦𝑖 }, includes all instances that have a different
label from 𝒛𝑖 . 𝑦𝑖 and 𝑦 𝑗 represents the label of instance 𝑖 and 𝑗 , 𝜏
is the temperature parameter, controlling the concentration of the
probability distribution, 𝜂 is the fixed hyperparameter to balance
the positive and negative sets. The loss function tries to maximize
the similarity for the embeddings from the same class and minimize
the similarity for the embeddings from different classes.

In detail, the representation refining model comprises two pri-
mary networks: an encoder and a projector. These two networks
collaboratively map the initial graph representations into a more
discriminative latent space, serving our goal of enhancing scam
token detection performance. The encoder, acting as the core of
feature extraction, is designed as a fully connected neural network
with two hidden layers. Specifically, it follows an Input(192) →
FC(96)→ ReLU→ FC(48)→ ReLU→ FC(24) architecture, ensur-
ing an optimal abstraction of meaningful features from the input
representations. In contrast, the projector further refines these fea-
ture spaces, ensuring suitability for the application of contrastive
loss. The projector comprises a fully connected network with a
structure of Input(24)→ FC(12)→ ReLU→ FC(24). By applying
this structure, the features from the encoder are effectively mapped
into a space where the contrastive loss can be effectively optimized.
The combination of the encoder and projector assures the effective
refinement of initial graph representations, delivering robust and
discriminative feature representations for scam token classifica-
tion. After training the representation refining model, the encoder
network is used to refine graph representations. The projector, opti-
mizing the contrastive loss during training, is discarded at inference
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phase. The output is a 24-dimensional feature vector, which is then
fed into the token classifier to identify the token risk.

3.5 Scam Token Detection

To monitor token risk and scam type, the detection model uses a
neural network, structured as FC(24) → ReLU → Softmax(4). It
utilizes the refined graph representation as input, transferring the
learned token representation into the scam-token detection task.
The final SoftMax layer yields a four-dimensional output vector,
corresponding to four distinct token detection results: trustworthy,
rugpull, honeypot, and Ponzi token. Each element in the output is
the categorical probability of the corresponding token class, rep-
resenting the prediction score for a specific token class. The final
classification result for each token is determined by the class corre-
sponding with the highest logit value in the SoftMax output.

4 Dataset

Token transfer data collection. Our experimental dataset was
collected spanned from 2015 to Feb. 28, 2023, before the start of
our experiment. We utilized the QuickNode archive node [16] to
query the entire transaction history of the Ethereum main network.
By employing the web3.py library [26], we created a filter that
monitored the transfer event logs of standard ERC20 tokens. We
targeted the ERC20 transfer function signature (0xa9059cbb) and
verified that the to field matched the token contract address, allow-
ing to capture all token transfers. Besides, we excluded LP tokens
if the token was issued by DEXs, such as UniSwap v2 and v3.

For each transfer, we extracted the fields including token address,
sender, recipient addresses, transfer value, and its timestamp. We
focused on the earliest 500 token transfer events for each token,
since these transfers represent a critical phase in a token’s life, re-
flecting initial adoption patterns, liquidity provision, and initial user
behaviors, serving as a window into the token’s characteristics and
early activities. They encapsulate essential insights into potential
fraudulent activities or anomalous patterns. Training a detection
model on these initial transfers can enable real-time risk tracking
and early detection of scam tokens.

Token labeling. To achieve precise token groundtruth labeling,
four token auditors in an anoymous leading Web3 security team
contribute scam tokens labeling, including already-happened and
suspicious scam tokens, where each auditor has at least one-year-
experience in auditing. They identified scam tokens based on their
domain knowledge of token risk by considering various factors, e.g.,
token contract codes, historical transactions, pool liquidity, price
fluctuations, auditing reports from other famous auditing platforms,
and project’s whitepaper. Specifically, they were required to follow
a rigorous auditing process, where a token might be labeled as
a scam based on characteristics suggesting potential fraudulent
activity, even if it had not yet scammed or stolen investors’ funds
at that point. Each token was reviewed by at random three auditors
independently. If two or more auditors disagreed on a token’s label,
they would discuss and reach a consensus. A random subset of
labeled contracts was cross-verified by another auditor to ascertain
the quality of labeling. Additionally, for the token that have already
scammed, the auditors documented marking scam occurrences, e.g.,
the instance when a significant token price drop happened.

To accelerate the labeling of tokens with obvious scam charac-
teristics, they designed useful heuristic rules implementing part of
auditors’ domain knowledge. These rules inspect the token con-
tract and simulates trading for fast determining the obvious scam
token. Specifically, a token matching multiple rules with high con-
fidence, it will be labelled as honeypot or Ponzi token with high
priority. Besides, for most tokens not matching any rules or with
low confidence, they further verified through the following criteria
ranked by priority: (i) a token is labelled as scam token if reported
as a rugpull, honeypot, or Ponzi by reputable blockchain auditing
communities, including e.g., Goplus, CertiK, PeckShield, Blocksec,
and MetaTrust [2, 4, 11–13]; (ii) a token is labeled as a Ponzi if it
incentivizes existing investors to recruit new ones through refer-
ral bonuses or additional tokens, as stated in the whitepaper or
social media, or if it relies on a constant flow of new investments
to provide returns to older investors in past token transfers; (iii) a
token is labeled as rugpull, if there is a sharp drop on token price
and the sender of this transaction is the token contract owner or
has connection with the owner in the past, or the contract owners
hold more than 10% tokens; (iv) tokens are labelled as suspicious
rugpull candidates if they meet any of the following conditions:
lacking intrinsic value, remaining inactive for more than a week,
being absent from mainstream DEXs, or having a token contract
that is not open-sourced; (v) a token is labeled as trustworthy if it is
known as a famous trustworthy token, e.g., USDT, WETH, or listed
on mainstream platforms, including Etherscan [23], CoinGecko [5],
and CoinMarketCap [6]. Tokens on these platforms undergo care-
ful manual cross-verification to ensure their credibility. Besides,
old token addresses lacking transfer activity but migrated to new
verified contract address were labeled as trustworthy.

Also, we recorded specific timestamps for each type of scam
occurrence. For rugpull tokens, we noted the moment when the
token price dropped sharply. For honeypot tokens, we tracked when
the token became unsellable or when the contract owner raised
the sell tax beyond 10%. Additionally, we recorded the times when
auditing communities reported tokens as honeypots. For Ponzi
schemes, we highlighted the timestamps when these schemes were
flagged by auditing communities and when there were very few
buy transactions within a specific period.

The labeling process took about 56 days, consuming over 800
man-hours. The compiled dataset comprises 9,711,502 token trans-
fer events and 214,084 ERC20 marketplace tokens, among which
1,806 were labeled as trustworthy, and 212,278 were scams. These
scam tokens include 179,995 rugpull (84.08%), 22,800 honeypot
(10.65%), and 9,483 Ponzi tokens (4.43%). Among these tokens, 37,439
were publicly reported as scams by Goplus, CertiK, PeckShield,
Blocksec, and MetaTrust, where 35,547 are rugpulls, 1,421 are hon-
eypots, and 471 are Ponzi tokens. Additionally, 9,452 contracts did
not open-source. This presents a significant imbalance with approx-
imately 99.16% tokens being scams and only 0.84% being legitimate,
mirroring the prevailing fraudulent activities, particularly rugpulls.
The high scam token percentage reflects our strict labeling criteria,
based on the auditors’ expertise, where many tokens, especially
those lacking liquidity and transaction activity, are viewed as po-
tential scams.

963



TokenScout: Early Detection of Ethereum Scam Tokens via Temporal Graph Learning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

5 Performance Evaluation

In this section, we report performance of TokenScout.

5.1 Experimental Setup

Evaluation metrics. To rigorously evaluate performance in such
an imbalanced dataset, we used precision, recall, F1 score, BAC as
evaluation metrics, calculating over false positives, false negatives,
true positives, and true negatives. BAC is the average of recall
obtained on each class, i.e., average of true positive rate and true
negative rate for detecting scam token, while F1 score is a measure
of the harmonic mean of precision and recall. For detecting scam
tokens, a false positive is a trustworthy token that is misclassified
as scam, while a false negative refers to a scam token misclassified
as trustworthy. For predicting token types, we compute the average
false positive and false negative across each scam token type to
yield the overall false positive and false negative rates. A false
positive for a token type arises when a token is misidentified as
that type, while a false negative occurs when a token of that type
is wrongly classified as another.

Graph baseline models. We considered the following base-
line graph model for comparison. (i) Deepwalk [52] utilizes random
walks to generate node sequences and Skip-Gram to model these se-
quences, capturing local and global graph structure. (ii) GCN [42] is
a semi-supervised method that learns node representations through
local neighborhood information aggregation. (iii) GraphSAGE [38]
is an inductive embedding method that employs aggregator func-
tions to generate embeddings, which can produce embeddings for
previously unseen nodes or entirely new graphs. (iv) TGAT [68]
is a temporal graph model that utilizes self-attention mechanisms
alongside time encoding, grounded on Bochner’s theorem. This
approach treats node embeddings as functions that vary over time,
allowing for nuanced temporal insights.

Implementation and hyperparameters. To real-time retrieve
token transfer data, it follows these steps: Specifically, (i) utilizing
the Web3 library [26], it first connects to an Ethereum remote pro-
cedure call (RPC) node (e.g., Quicknode [16] or Infura [17]), which
provides access to the latest blocks, state information,and token
transfer data; (ii) transactions from both past and latest blocks are
fetched using the interface getBlock with full_transactions
as True; (iii) it then extracts the transactions data involving to-
ken transfers by matching the to field with the token contract
address and verifying that the input field starts with the ERC20
transfer function signature (0xa9059cbb); (iv) for token transfer
event, the input field is decoded to extract the details, e.g., sender,
recipient, and transfer value and the decoded token trans-
fer data are saved for building DTAM. A decoded transfer event
can be denoted as (token_addr, from, to, value, ts), representing
the sender address, from, transfers a specific amount, value, of
the token token_addr to the recipient address, to, at the times-
tamp ts. As an example, a transfer event of token DGX [22] is:
{0x55...5,0x38...1, 0x9d...3,2e8,1454624524}.

Experiments were conducted with Ubuntu 18.04 LTS and the
machine with two Intel CPUs (Intel(R) Xeon(R) W-3265M CPU@
2.70GHz CORE 24), an NVIDIA GPU (A100 PCIE Gen4) and 512G
RAM. The environment utilized Python 3.10.7, PyTorch 1.13.0, torch-
geometric 2.2.0, and networkx 2.8.8. We implemented neighbor

sampling on the CPU and stochastic minibatch training on the GPU
to handle the massive graph with millions of nodes and billions of
edges. During training, we selected small batches of nodes at each
gradient descent step, computing their final representations at the
𝐿𝑡ℎ layer, and included some or all neighbors of these nodes at the
𝐿 − 1 layer. The training, validation, and test sets were split in a
70%-15%-15% ratio, and results were averaged over 10 runs.

We set our two-layer graph model TF-GNN (L=2) to use the
mean aggregator for calculating element-wise mean vectors of
all selected neighbors. Other aggregators and selection methods
are also applicable in Algorithm 1. Short and long-term window
for node and feature extraction is 6 hours and 48 hours. Training
utilized the Adam optimizer [65] with parameters learning rate
as 0.001, 𝜏 and 𝜂 as 0.1 and 300 for contrastive loss. Batch sizes
were set to 256, 512, and 1024 for the graph model, representation
refining, and classifier respectively, with 60 epochs for the graph
model and 50 for the refining and classifier. Negative interactions
were equally sampled with positive ones during training, and BAC
is used as the reference metric. Early stopping (patience: 5 epochs)
was implemented to prevent overfitting. Random undersampling
was applied to train the detection model by limiting each batch to
5% scam token.

5.2 Performance of TokenScout

Overall performance. To evaluate the performance of Token-
Scout, we used the node and edge features, DTAM + TF-GNN as
the graph model to learn the graph representation, and represen-
tation refining to encode the graph representation into a lower-
dimensional latent space. Table 2 (setting 1) reports the performance
of TokenScout in scam token detection (T1) and token type pre-
diction (T2). In T1, TokenScout achieved an FNR of 2.53%, an FPR
of 0.65%, an F1 score of 97.75%, a BAC of 98.41%. In T2, Token-
Scout maintained high performance, achieving an FNR of 5.10%,
an FPR of 1.69%, an F1 score of 94.85%, and a BAC of 94.90%. Re-
sults underscore the effectiveness in detecting scam tokens and
types. The low FNR and FPR indicate that TokenScout can reli-
ably distinguish between scam and non-scam tokens, minimizing
false negatives and false positives. The high F1 scores reflect a bal-
anced precision and recall, highlighting TokenScout’s robustness
in real-world scenarios. The BAC values, close to 100%, empha-
size TokenScout’s capability in providing accurate and consistent
predictions across different types of scam tokens. These insights
affirm that TokenScout not only excels in early detection but also
in detailed classification, enhancing the security and integrity of
the DeFi ecosystem.

Comparison with baseline graph models. We compared To-
kenScout with SOTA graph models, including GCN, DeepWalk,
GraphSAG, GraphSAGE with LSTM, and TGAT. Originally these
models are designed for node representation learning, while we
adapted them for whole-graph representation learning. Specifically,
for GCN, DeepWalk, and GraphSAGE, we employed mean aggre-
gation on node embeddings to derive graph-level representations.
GraphSAGE with LSTM used the final hidden state for graph rep-
resentation. TGAT’s were harnessed for node embeddings, with
mean aggregation applied for graph-level representation.
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Table 2: Performance of TokenScout (bold). Ablation study results (not in bold) are presented for comparative analysis under

different settings (S).
∗
BAC is the average of recall from each class in T2.

# S Graph model Node Edge Refining
T1 - scam token detection (binary) T2 - token type identification (four-class)

Precision Recall FPR FNR F1 BAC Precision Recall FPR FNR F1 BAC
∗

1 DTAM + TF-GNN ✓ ✓ ✓ 98.03% 97.47% 0.65% 2.53% 97.75% 98.41% 95.71% 94.90% 1.69% 5.10% 94.85% 94.90%

2 Deepwalk ✓ ✓ ✓ 71.45% 75.74% 30.14% 24.26% 73.53% 72.80% 67.17% 67.34% 10.86% 32.66% 64.90% 67.34%
3 GCN ✓ ✓ ✓ 77.80% 73.31% 20.85% 26.69% 75.49% 76.23% 72.31% 71.96% 9.33% 28.04% 70.22% 71.96%
4 Graphsage ✓ ✓ ✓ 78.75% 75.27% 20.23% 24.73% 76.97% 77.52% 76.46% 75.53% 8.14% 24.47% 74.36% 75.53%
5 Graphsage + LSTM ✓ ✓ ✓ 80.79% 79.14% 18.76% 20.86% 79.95% 80.19% 78.70% 77.66% 7.43% 22.34% 76.48% 77.66%
6 TGAT ✓ ✓ ✓ 83.05% 82.92% 16.86% 17.08% 82.99% 83.03% 82.04% 80.60% 6.45% 19.40% 79.58% 80.60%
7 DTAM + TF-GNN ✗ ✓ ✓ 77.53% 74.72% 21.58% 25.28% 76.10% 76.57% 75.75% 75.26% 8.23% 24.74% 73.82% 75.26%
8 DTAM + TF-GNN ✓ ✗ ✓ 85.82% 85.62% 14.10% 14.38% 85.72% 85.76% 84.92% 83.48% 5.49% 16.52% 82.84% 83.48%
9 DTAM + TF-GNN ✗ ✗ ✓ 72.69% 74.33% 27.81% 25.67% 73.50% 73.26% 69.43% 69.47% 10.15% 30.53% 67.25% 69.47%
10 DTAM + TF-GNN ✓ ✓ ✗ 88.40% 90.99% 11.89 % 9.01% 89.68% 89.55% 86.94% 85.93% 4.74% 14.07% 85.09% 85.93%
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Figure 4: Comparison of existing scam token detections
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Figure 5: Performance under different periods

Table 3: Detailed comparison of different methods in detect-

ing different scam tokens types

Method Type FNR FPR

TokenScout

Rugpull token 3.58% 0.40%
Honeypot token 4.72% 1.80%
Ponzi token 6.03% 1.35%
Trustworthy token 6.07% 3.21%

Mazorra et al. [50]

Rugpull token 24.06% 17.21%
Honeypot token 22.89% 22.04%
Ponzi token 27.96% 24.56%
Trustworthy token 30.97% 29.99%

Xia et al. [67]

Rugpull token 23.84% 33.26%
Honeypot token 31.71% 31.61%
Ponzi token 32.34% 36.13%
Trustworthy token 38.83% 25.72%

Rule-based

Rugpull token 23.62% 25.93%
Honeypot token 26.80% 25.56%
Ponzi token 27.17% 22.83%
Trustworthy token 27.21% 30.48%

As presented in Table 2 (Setting 2, 3, 4, 5 and 6), TokenScout
outperformed the graph models across both tasks, achieving the
highest F1 scores and BAC. Results show TokenScout’effectiveness
in learning feature representation for scam tokens, highlighting
its robustness and superiority of TokenScout over SOTA graph
models. For example, for task T1, TokenScout achieved a 97.75%
F1 score, surpassing the second-best model, TGAT, by 14.76%. In
task T2, TokenScout’s F1 score of 94.85% was significantly better
than the second-best model, GraphSAGE with LSTM.

Comparison with existing methods. At the end of our exper-
iments, we compared our method with two related works, Mazorra

et al.[50] and Xia et al.[67], which mainly focus on detecting rug-
pull scams using token transfer data. For a fair comparison, we
used the features and methodologies from these works to train
detection models on our dataset for predicting future scam tokens.
We adapted their methodologies to detect multiple scam types,
including honeypot and Ponzi scams, to evaluate their broader ef-
fectiveness. We also compiled the rule-based detection, where we
used the label with highest confidence as the decision result for
each token.

Figure 4 shows thatTokenScout outperforms existing approaches
in both scam token detection and type identification. TokenScout
achieved a BAC of 98.41% for scam token detection, significantly
higher than the 79.16% and 75.81% reported by Mazorra et al. and
Xia et al., respectively. In identifying specific scam token types, To-
kenScout also excelled with a BAC of 94.90%, compared to 75.04%
for Mazorra et al. and 68.32% for Xia et al. Table 3 reports the
detailed comparison results in detecting different types of scam to-
kens. TokenScout consistently outperformed both methods across
all scam token categories. For example, TokenScout achieved an
FNR of 3.58% and an FPR of 0.40% for rugpull tokens, significantly
lower than the 24.06% FNR and 17.21% FPR reported by Mazorra
et al. Similarly, for honeypot tokens, TokenScout’s FNR of 4.72%
and FPR of 1.80% were much lower than the 22.89% and 22.04%
reported by Mazorra et al. Xia et al. was less effective overall, partic-
ularly in detecting Ponzi and honeypot tokens, where it exhibited
higher FNRs and FPRs, indicating lower sensitivity and specificity
compared to TokenScout.
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Robustness over different periods.To evaluateTokenScout’s
adaptability to evolving scam patterns, we used the datasets of dif-
ferent periods by updating the model with new token transfer data
and testing its performance. Starting with training on 70% of the
dataset from 2015-2017 and testing on the remaining 30%, we then
expanded training to include data from 2018-2020, and finally up to
2021-2023. Figure 5 shows performances under different periods. It
achieved a BAC of 95.47%, 94.57%, and 94.29% for respective periods
in detecting scam tokens. For scam token prediction, it achieved
a BAC of 94.14%, 93.33%, and 92.92%. Results demonstrate Token-
Scout consistently maintains high performance across different
periods, and is resilient against evolving scam behaviors. It also re-
veals that while the BAC slightly decreases over time, TokenScout
remains robust, suggesting its ability to adapt to new scam tactics
and patterns. The slight decline in BAC indicates that scammers are
continually evolving their methods, but TokenScout’s architec-
ture allows it to stay effective by leveraging updated training data.
This resilience underscores the importance of continuous model
updates and retraining to capture emerging scam strategies, ensur-
ing long-term reliability and efficacy in detecting and predicting
scam tokens.

5.3 Ablation Studies

Effectiveness of node features. We evaluated node features’ ef-
fectiveness by holding TokenScout’s other components constant,
running tests with and without node features. Analyzing results
between setting 1 (with node features) and setting 7 (without node
features) in Table 2, there is a performance decrease when node
features were not included. In T1, F1 score diminished from 97.75%
to 76.10%, and BAC from 98.41% to 76.57%. Similarly, for T2, F1 score
and BAC fell from 94.85% and 94.90% to 73.82% and 75.26%, respec-
tively. Results highlight the critical importance of node features in
TokenScout’s effectiveness. These features, which indicate node
significance and token transfer patterns, are crucial for identifying
scam tokens. Without them, the model struggles to grasp token
transfers, negatively impacting its performance.

Effectiveness of edge features. Similarly, comparing results
between setting 1 (with edge features) and setting 8 (without edge
features) in Table 2, there is a decrease in performance in the ab-
sence of edge features. In T1, F1 score dropped from 97.75% to
85.72%, and BAC from 98.41% to 85.76%. In T2, F1 score and BAC
declined from 94.85% and 94.90% to 82.84% and 83.48%, respectively.
Edge features also play a pivotal role in TokenScout’s performance,
capturing key relationships between token transfers and nodes in
the graph for effective scam token identification.

Effectiveness of incorporating node and edge features. We
also evaluated the joint impact of node and edge features by testing
TokenScout in two scenarios: one incorporating both features and
another omitting them. Comparing setting 1 and 9 in Table 2, we
observed a decline in performance without both node and edge
features. In T1, the F1 score and BAC diminished from 97.75% and
98.41% to 73.50% and 73.26% respectively. Likewise, in T2, they
decreased from 94.85% and 94.90% to 67.25% and 69.47%. The re-
sults underscore the vital role of both node and edge features in
TokenScout. Their exclusion diminishes the model’s capacity to

discern complex token transfer patterns, affirming their essentiality
in achieving accurate scam token detection.

Effectiveness of representation refining. Comparing setting
1 and 10, the results exhibit the refining’s crucial role. Without
it, TokenScout’s performance metrics dip: F1 score in T1 falls
from 97.75% to 89.68% and in T2 from 94.85% to 85.09%; BAC in
T1 drops from 98.41% to 89.55% and in T2 from 94.90% to 85.93%.
Clearly, the refining significantly enhances TokenScout’s accuracy
in detecting scam tokens and identifying their types.

5.4 Real-world Evaluation

To evaluate the effectiveness in predicting future risk, we measured
how long in advance our system can predict scam tokens ahead of a
scam and howmuch economic loss can be alerted by early detection.
TokenScout was trained using at most 500 transfers prior to the
scam, and predicts future token risk using the latest 500 transfers for
each token. We also deployed TokenScout on Ethereum to monitor
real-time transactions to evaluate its effectiveness. Specifically, the
lead time of alerting risk is measured by calculating the interval
of detection time and marked scam time. To gauge alerted losses,
we calculated the sum value of trustworthy tokens (e.g., WETH,
USDT, BNB, WBTC) transferred before TokenScout flags a scam
risk, multiplied by the token price when the scam is identified. We
also measured FNR of TokenScout, which represents the ratio of
undetected scam tokens to the total scam tokens. Table 4 presents
performance of TokenScout in alerting scams ahead of time and
potential economic loss, during past periods (2015 - 2023.2) and
real-world evaluation (2023.3 - 2023.5). When testing the historical
token transfer dataset, it detected the rugpull, honeypot and Ponzi
tokens with an FNR of 1.68%, 2.98%, and 2.66%, respectively, alerting
the loss of 99.66%, 92.14%, and 97.17%. When testing it for real-time
risk monitoring, it detected the rugpull, honeypot and Ponzi tokens
with an FNR of 3.55%, 4.92%, and 0%, alerting the loss of 90.52%,
93.36%, and 100%, respectively. Results suggest the effectiveness in
early-detecting scam tokens risk before their occurrences.

5.5 Evasion Study

Evasions. Scammers may attempt to evade the early-detection
of scam token by intentionally manipulating the token transfers.
We consider the following black-box evasions, aiming to evade
detection through random and inconspicuous attempts:

(i) Node and edge addition. The adversary simultaneously intro-
duces new nodes 𝑣𝑛𝑒𝑤 into 𝑉 and new edges 𝑒𝑛𝑒𝑤 into 𝐸 such that
𝑉 ′ = 𝑉 ∪𝑣𝑛𝑒𝑤 and 𝐸′ = 𝐸∪𝑒𝑛𝑒𝑤 , respectively. The new edges 𝑒𝑛𝑒𝑤
connect the nodes in 𝑉 ′, thereby altering the graph’s structural
characteristics.

(ii) Value manipulation. The adversary manipulates transaction
values by adding noise to the original values 𝑋𝑒 , with each noise el-
ement drawn from a normal distribution 𝑁𝑒 ∼ 𝑁 (𝜇𝑒 , 𝜆𝑒𝜎𝑒 ), where
𝜇𝑒 and 𝜎𝑒 are the mean and standard deviation of the token trans-
fers’ value. 𝜆𝑒 is the factor controlling value manipulation. The
manipulation is element-wise, therefore each value in 𝑿𝑒 has a
unique noise value, i.e., 𝑿 ′𝑒 = 𝑿𝑒 + 𝑵𝑒 .

(iii) Timestamp manipulation. The adversary manipulates times-
tamps 𝑇 using a random permutation, i.e., 𝑇 ′ = 𝑇 + 𝑁𝑡 . 𝑁𝑡 is
a random permutation of 𝑇 following a normal distribution, i.e.,
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Table 4: Lead time of alerting risk and alerted loss (million USD) under historical transfers and ongoing real-time transfers

Past periods (2015 - 2023.2) Real-world evaluation (2023.3 - 2023.5)

Type # Detected / Total FNR Time (hour) Prev./Total (million $) Ratio FPR # Detected / Total FNR Time (hour) Prev./Total (million $) Ratio FPR

Rugpull 176,971 / 179,995 1.68% 9.67±3.75 7,826.74 / 7,853.12 99.66% 2.54% 706 / 732 3.55% 8.55 ± 4.31 108.07 / 119.38 90.52% 5.95%
Honeypot 22,121 / 22,800 2.98% 78.91±15.22 3,619.44 / 3,928.11 92.14% 3.96% 174 / 183 4.92% 45.32±9.84 73.71 / 78.95 93.36% 6.22%
Ponzi 9,230 / 9,483 2.66% 236.43±49.10 928.38 / 955.37 97.17% 0.42% 92 / 92 0% 343.23±37.10 63.24 / 63.24 100% 2.71%
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Figure 6: Categorical probabilities of rupull (a), honeypot (b), and Ponzi (c) token under adversarial manipulations.

𝑁𝑡 ∼ 𝑁 (𝜇𝑡 , 𝜆𝑡𝜎𝑡 ), where 𝜇𝑡 and 𝜎𝑡 are the mean and standard de-
viation the time difference of two consecutive token transfers. 𝜆𝑡 is
the factor controlling timestamp manipulation.

Evasion ii and iii differ from strategy i in their impact on the
graph. While strategy i adds new transactions, thereby expanding
the graph’s topology, strategies ii and iii subtly modify existing
transactions through value and timestamp manipulation. This ap-
proach alters transactional patterns and timings within the graph,
rather than merely increasing its size. Testing with such a normal
distribution can reflect this scenario, providing a realistic assess-
ment of the model’s resilience against untargeted, random inputs.
Specifically, 𝜆𝑒 and 𝜆𝑡 are set as 0.1 for evaluation.

Results. To evaluate TokenScout’resilience against potential
adversarial manipulations, we simulated black-box testing scenar-
ios, where the attacker has none knowledge about the detection
model and attempts to inject noise into historical transactions ran-
domly to evade detection. Table 5 presents FNRs and categorical
probabilities (generated by the Softmax layer) of rugpull, honeypot,
and Ponzi tokens under three adversarial manipulations, includ-
ing node and edge addition (nea), value manipulation (vm), and
timestamp manipulation (tm). Results suggest that TokenScout
is resilient against adversarial manipulations. For example, when
not applying adversarial manipulations, FNR is 1.68%, 2.98%, and
2.66% for rugpull, honeypot, and Ponzi tokens, respectively. Under
a combination of three attacks, it achieved an FNR of 2.95% for rug-
pull tokens, 3.83% for honeypot tokens, and 4.13% for Ponzi tokens.
Figure 6 presents cumulative distribution function (CDF) of these
probabilities under adversarial manipulations. The mean categori-
cal probabilities are 91.28%, 92.24%, and 91.17% in normal conditions
to 86.45%, 85.34%, and 86.55% under these attacks, respectively.

6 Discussion

Despite our efforts to maintain the effectiveness of our study, there
still exist several limitations. In our evaluation, we disregarded

Table 5: Mean/standard deviation of categorical probabilities

and FNRs under adversarial manipulations

Type Setting Probabilities FNR

Rugpull token

nea-vm-tm 86.45% / 1.89 2.95%

nea 89.31% / 0.94 2.42%
vm 87.34% / 0.96 2.67%
tm 90.23% / 0.77 2.33%

w/o attack 91.28% / 0.67 1.68%

Honeypot token

nea-vm-tm 85.34% / 3.95 3.83%

nea 86.95% / 0.95 3.69%
vm 89.84% / 1.11 3.27%
tm 90.79% / 1.03 3.15%

w/o attack 92.24% / 0.72 2.98%

Ponzi token

nea-vm-tm 86.55% / 1.76 4.13%

nea 89.94% / 0.79 3.75%
vm 89.52% / 1.08 3.21%
tm 88.14% / 1.79 3.84%

w/o attack 91.17% / 0.96 2.66%

price fluctuations resulting from attack events or broader economic
factors. These shifts can be triggered by unexpected contract vul-
nerabilities, foundational protocol issues, or external influences im-
pacting market sentiment. Particularly, 0-day exploits pose distinct
challenges, eluding detection through mere on-chain transaction
analysis. Moreover, off-chain events like geopolitical developments
or regulatory news can influence token prices, making predictions
based solely on transactional patterns complex. Additionally, our
large-scale dataset compilation process might have resulted in a few
mislabeled tokens and overlooked new types of scams, highlighting
the complexity of accurately categorizing scam tokens.

Model limitation. TokenScout, while effective, has its con-
straints. It can potentially be bypassed by strategic manipulations
adapting to its design, also a challenge typical in security models.
Its performance also depends heavily on the quality and availabil-
ity of historical data; thus, novel scam tactics differing from past
patterns may slip through. False positives and negatives, inherent
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to detection models, could impact its trustworthiness and usability
in TokenScout. Additionally, despite our efforts to ensure accurate
manual token labeling, the process remains prone to human errors
and biases. Such inaccuracies can disrupt the training phase, poten-
tially compromising TokenScout’s detection capabilities. Address-
ing these limitations, especially in adversarial resilience, detection
efficiency, and reducing false positive/negative rates will be the
focus of future updates.

Token labeling rules. We note that these statistic rules, cre-
ated from the auditors’ knowledge, can not be leveraged for scam
token early detection, but to help quickly label tokens. Also, rules
can cause false results, like mislabeling benign tokens with high
initial transaction taxes designed to prevent fraud. Based on rule-
based detection results, each token undergoes thorough review
by auditors, ensuring consensus before finalizing the token label.
Instead, TokenScout focuses on token transfer activities and aims
for real-time monitoring, capable of identifying potential future
scams and confirming existing tokens. It offers a more dynamic and
forward-looking analysis compared to rule-based methods.

Imbalanced dataset. The proliferation of rugpull tokens has
led to a skewed dataset with an overrepresentation of these scams.
This imbalance poses a challenge, potentially biasing TokenScout
towards over-identifying rugpulls and increasing the risk of false
negatives for trustworthy tokens. To mitigate this, we employed
strategies like undersampling to balance the dataset before training,
and incorporated asymmetric contrastive loss in model training.
Besides, we used comprehensive metrics, e.g., precision, recall, FPR,
FNR, F1, and BAC, for fair performance reporting.

Efficacy of TokenScout for different scam token stages.

We did not evaluate TokenScout’s efficacy at various stages of a
scam token’s lifecycle in our current study. However, we hypothe-
size that TokenScout’s detection efficacy is higher for scam tokens
with extensive transaction histories. The increased data allows the
model to reveal more transfer traits and behavioral patterns indica-
tive of scams. While TokenScout is capable of performing early
detection, its accuracy and robustness improve with more transac-
tion data, making it more efficient at identifying scam tokens with
extensive histories. This improvement is due to the richer set of
interactions and behaviors that become apparent over time, provid-
ing the model with more information to make accurate detections.
Future work will include a detailed evaluation of TokenScout’s
performance at different stages of a scam token’s lifecycle to vali-
date this hypothesis.

TokenScout’s detection capabilities and limitations. De-
tecting tokens with embedded vulnerabilities: If a token is mali-
ciously created with embedded vulnerabilities designed to scam
investors, TokenScout can help identify it. By analyzing transfer
patterns and transaction behaviors of investors and creators using
TF-GNN, TokenScout detects suspicious tokens. Modeling tem-
poral dynamics and relational features enables the identification
of anomalous behaviors linked to these embedded vulnerabilities
aimed at scamming investors.While TokenScout primarily focuses
on transaction-based detection, this approach can also highlight
potential vulnerabilities indicative of price manipulation attacks,
such as price oracle manipulation. However, there are still several
exploits that TokenScout cannot detect, including cross-layer at-
tacks, NFT token-related vulnerabilities, DeFi arbitrage, and other

sophisticated exploit techniques that may require more advanced
detection mechanisms or cross-domain analysis.

7 Related Work

Scam tokens in DeFi. Over past years, there has been a growing
interest in studying the scam risk of ERC20 token from various
perspectives [31, 37, 50, 63, 67]. Gao et al. studied counterfeit tokens
by analyzing aspects such as token popularity, creators, holders,
and fraudulent behaviors [37]. Wang et al. conducted an empirical
study on the risk of unlimited approval in ERC20 tokens, revealing
that 22% of users faced a high risk of approved token theft [63].
Chen et al. used graph analysis to investigate ERC20 tokens and
proposed a clustering approach to uncover relationships between
tokens and accounts [31]. Federico et al. conducted an empirical
study on the ERC20 tokens, focusing on spammers, rugpulls, and
sniperbots [29]. Xia et al. [67] and Mazorra et al. [50] explored
traditional machine learning methods to flag rugpull tokens after
the rugpull occurred, utilizing transaction events related to DEXs
and statistical features.

Graph neural networks. Unlike traditional neural networks
designed for grid-like data structures, GNNs and their variants op-
erate directly on graph data, enabling them to model the complex
interconnections between entities. Inspired by convolutional mech-
anisms, GNNs leverage message passing to iteratively aggregate
and update node representations by considering their neighbor-
hood structure, allowing to capture the local and global structure of
graphs [66]. Many GNN variants, e.g., GAT [62], GraphSAGE [38],
GIN [70], TGAT [68], and TGN [55] have been explored for different
graph task, including directed graphs, heterogeneous graphs, and
dynamic graphs. These models have been successfully applied to
graph-structured data modeling, e.g., point cloud classification [58],
action recognition [57], recommendation systems [36], molecular
fingerprints [34], and drug discovery [41].

TokenScout vs. previous scam token detections. (i) Novel
framework and graph learning techniques.Differ from existing GNNs
[51, 68], constrained by fixed time intervals, or lacking adaptability
for asynchronous events and long-term dependencies, TF-GNN
applied to DTAM, captures the inherent dynamism and swift shifts
in token transfers, providing an in-depth grasp of evolving interac-
tions. It is also uniquely designed for graph modeling on TF-GNN
with contrastive learning for risk monitoring. (ii) Early detection.
TokenScout provides real-time alerts for potential token risks be-
fore scams occur, advancing beyond previous studies that primarily
centered on pre-detecting Ponzi tokens through contract analysis
or post-identification of rugpulls. (iii) Broad scope. TokenScout
extends beyond specific DEXs or token types, encompassing all
standard ERC20 marketplace tokens on Ethereum, offering a more
comprehensive coverage compared to previous researches.

TokenScout vs. previous GNN-based detections in DeFi.

Besides, we would like to highlight that while some previous meth-
ods used temporal GNNs in certain [39, 45, 74, 77] for detecting
cryptocurrency phishing, TokenScout represents a significant ad-
vancement in the field of graph representation learning within
temporal GNNs. Specifically, TokenScout introduces several pi-
oneering features that differentiate it from earlier approaches: (i)
TokenScout employs a fully temporal GNN that encodes time as a
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learnable vector through a novel temporal encoder, enabling the
model to robustly capture the dynamic nature of token transfers by
considering the intervals between transactions, which are crucial
for identifying evolving patterns in scam activities. (ii) TokenScout
designs several new learning strategies for GNNs, including compre-
hensive representation learning for edges (E1-3) and nodes (G1-3).
The model learns the representations of token transfer traits, token
creators’ behaviors, and investors’ behaviors, leveraging insights
specific to scam tokens. This holistic approach ensures a deeper and
more accurate understanding of the underlying patterns associated
with scam tokens. (iii) TokenScout identifies and utilizes informa-
tive edge and node features for constructing the Dynamic Temporal
Attribute Model (DTAM), as shown in Table 1. This contrasts with
previous methods, such as TTAGN [45], which primarily relied on
static features like in/out degrees. By incorporating a broader and
more dynamic set of features, TokenScout ensures more efficient
and effective graph learning. In summary, TokenScout not only
introduces a novel fully temporal GNN model but also implements
advanced GNN learning strategies and an enhanced feature set for
nodes and edges. These innovations allow TokenScout to detect
the future risk of scam tokens with greater accuracy and efficiency
compared to previous methods, which focused mainly on predicting
the risk of transactions and addresses.

8 Conclusion

We propose TokenScout, the scam token early-detection frame-
work using temporal GNN. By formulating token transfer activities
as a DTAM, incorporating strategic graph learning techniques TF-
GNN to capture the complex temporal dynamics of token transfers,
and leveraging contrastive learning to learn robust token represen-
tations, TokenScout effectively identifies potential scam tokens
with high robustness and accuracy, even in adversarial conditions. It
captures essential scam token characteristics and alerts real-world
financial losses of DeFi tokens. We also contribute the largest reli-
able scam tokens detection dataset, which will bolster the security
and trust of tokens in the future DeFi ecosystem.
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